The resource of the gas from coal and coal measures deep in Songliao Basin has been drawing more and more attention to . It is necessary to find out the evolution regularity of the geothermal field of the basin in add...The resource of the gas from coal and coal measures deep in Songliao Basin has been drawing more and more attention to . It is necessary to find out the evolution regularity of the geothermal field of the basin in addition to a series of geological studies in order to predict its resources because the ancient geothermal field of the basin is one of the main factors controlling the generation , evolution and disappearance of oil and gas . In the recent twenty years , it is generally believed that vitrinite reflectance is the best quantitative marker for the ancient geothermal field . In the present paper , a systematic study of the vitrinite reflectance value of Songliao Basin and its influence factors is made by multiple statistical analysis so as to reconstruct the evolutional process of the Moho and the corresponding geothermal field . Then , an overall prediction is made of the vitrinite reflectance and the distribution of J3-K1 fault basin group at the bottom of Songliao Basin , which provides the evidence for the further prediction of the gas potentiality from coal and coal measures deep in the basin .展开更多
The law of mathematical statistics, which the coal vitrinite reflectance index obeys, the existing vitrinite representing deviations, and the advantages of judging coalification and the shortage of judging coal type w...The law of mathematical statistics, which the coal vitrinite reflectance index obeys, the existing vitrinite representing deviations, and the advantages of judging coalification and the shortage of judging coal type were analyzed. The advantages and disadvantages of various determination methods and the expression index and different methods of identifying vitrinite on the determination results were compared. The vitality of coal vitrinite reflectance depends on its full play the unique function of reflectance histogram and the systematic errors between different determination methods do not affect the application based on reflectance histogram are considered.展开更多
Thermal maturity is commonly assessed by various geochemical screening methods(e.g.,pyrolysis and organic petrology).In this contribution,we attempt to establish an alternative approach to estimating thermal maturity ...Thermal maturity is commonly assessed by various geochemical screening methods(e.g.,pyrolysis and organic petrology).In this contribution,we attempt to establish an alternative approach to estimating thermal maturity with Raman spectroscopy,using 24 North American oil shale samples with thermal maturity data generated by vitrinite reflectance(VRo%)and pyrolysis(Tmax)-based maturity calculation(VRe%).The representative shale samples are from the Haynesville(East Texas),Woodford(West Texas),Eagle Ford and Pearsall(South Texas)Formations,as well as Gothic,Mancos,and Niobrara Formation shales(all from Colorado).The Raman spectra of disordered carbonaceous matter(D1 and G bands separation)of these samples were directly obtained from the rock chips without prior sample preparation.Using the Gaussian and Lorentzian distribution approach,thermal maturities from VR were correlated with carbon G and D1.We found that the Raman band separation(RBS)displayed a better correlation for equivalent VRe%than vitrinite reflectance VRo%.The RBS(D1–G)distance versus total organic carbon,free hydrocarbons from thermal extraction(S1),and the remaining hydrocarbon generating potential(S2)indicate that the RBS(D1–G)distance is also related to kerogen type.Data presented here from three methods of maturity determination of shale demonstrate that Raman spectroscopy is a quick and valid approach to thermal maturity assessment.展开更多
Based on the models developed by Lerche et al. (1984) and Pang et al. (1993), an improved model for calculating paleoheat flow into basins is investigated. The new model is an optimization problem with the state varia...Based on the models developed by Lerche et al. (1984) and Pang et al. (1993), an improved model for calculating paleoheat flow into basins is investigated. The new model is an optimization problem with the state variables governed by a thermal conduction equation. A genetic algorithm is used to solve the highly nonlinear optimization problem. As an application, the model is applied to the research into the history of heat flow in the Pearl River Mouth basin located in the South China Sea. The numerical analysis shows that the simulation results are in good agreement with the measured data and indicates that the basin may have undergone three rifting and thermal events. It is also demonstrated that a high R0 gradient reflects a response to high paleoheat flow during the early, rapid subsidence stage, while a low R0 gradient is a result of the thermal decay during the thermal subsidence because of thermal contraction of a cooling lithosphere.展开更多
Three typical vitrinite reflectance (R0) proriles from Pearl River Mouth, Qiongdongnan and Beibuwan basins on the nortbern condsental shelf or the South China Sea display two or more different sub-linear slope relatio...Three typical vitrinite reflectance (R0) proriles from Pearl River Mouth, Qiongdongnan and Beibuwan basins on the nortbern condsental shelf or the South China Sea display two or more different sub-linear slope relationships between IgR0 and deptb. According to the reconstruction of sedimentary and burial histories for these wells, a relatively large R0 gradient corresponds to a high depositional rate, while a relatively small R0 gradieut represeuts a low depositional rate. In this study, a modiried thermal backstripping model for paleokeat fIow using vitrinite reflectance data has been used to reconstruct paleotbermal history by the linear-segmeut regression. Tke study results indicate that the gentle parts of a IgR0 profile rerlect abnormai periods or high paleoheat flow, in contrast, the steep parts of a IgR0 profile reflect periods of peleoheat flow decay.In order to have an alternative approach and correlative study, an improved two-layer extensional model for the formation and evolution or rifting basin iu pesive contiueutal margin bas been applied. The model simulates basin subsidence process due to stretcbing and thinuing of continental lithospbere and thermal effects by asthenospbere upwelling, and determines the relationship between subsidence and paleoheat flux through the geological time. The simulation results suggest that these basins have undergone two or three rirting and thermal events, and it is clear that the large R0 gradient segment reflects a response to high paleoheat flow during the early, rapid subsidence stage, while the low R. gradient segmeut is a result or the tbermal decay during the thermal subsidence because of thermal contraction of a cooling Iitbospbere. The results also suggest that the maturity profiles of these basins can be employed to visual understanding tke paleogeothermal characteristics of rifting basins.展开更多
The ever-increasing demand for oil and gas has driven its exploration in rather extreme conditions. In Lamu offshore, which is hitherto underexplored, most of the wells already drilled turned out dry save for a few we...The ever-increasing demand for oil and gas has driven its exploration in rather extreme conditions. In Lamu offshore, which is hitherto underexplored, most of the wells already drilled turned out dry save for a few wells with hydrocarbon shows despite the promising reservoir properties and related geological structures. This, therefore, necessitated a source rock evaluation study in the area to ascertain the presence and potential of the source rock by integrating the geochemical data analysis and petroleum system modeling. The shallow Lamu offshore source rock quantity, quality, and maturity have been estimated through the determination of the total organic carbon (TOC) average values, Kerogen typing, and Rock-Eval pyrolysis measurements respectively. Geochemical data for Kubwa-1, Mbawa-1, Pomboo-1, and Simba-1 were evaluated for determining the source rock potential for hydrocarbon generation. Petroleum system modeling was applied in evaluating geological conditions necessary for a successful charge within a software that integrated geochemical and petrophysical characterization of the sedimentary formations in conjunction with boundary conditions that include basal heat flow, sediment-water interface temperature, and Paleo-water depth. The average TOC of 0.89 wt % in the study area suggests a fair organic richness which seems higher in the late cretaceous (0.98 wt %) than in the Paleocene (0.81 wt %). Vitrinite reflectance and T<sub>max</sub> values in the study area indicate the possible presence of both mature and immature source rocks. Type III Kerogen was the most dominant Kerogen type, and gas shows are the most frequent hydrocarbon encountered in the Lamu Basin with a few cases registering type II/III and type II. The charge properties (i.e. Temperature, transformation ratio, and Vitrinite reflectance) over geologic time at each of the wells have been estimated and their spatial variation mapped as seen from the burial history and depth curves overlaid with temperature, transformation ratio, and Vitrinite reflectance respectively. From the upper cretaceous maturity maps, the results seem to favor near coastal regions where average TOC is about 1.4 wt %, Vitrinite reflectance is more than 0.5%, transformation ratio is more than 10%, and temperatures range from 80°C to 160°C. The results postulate the absence of a definitive effective source rock with a likelihood of having cases of potential and possible source rocks. Moreover, greater uncertainty rests on the source rock’s presence and viability tending toward the deep offshore. Geochemical analysis and petroleum system modeling for hydrocarbon source rock evaluation improved the understanding of the occurrence of the possible and potential source rocks and processes necessary for hydrocarbon generation.展开更多
In this study, the secondary well data for Cretaceous to Miocene cutting samples in four deep offshore exploration wells, i.e., Pomboo-1 in the north, Kubwa-1 in the central, Simba-1 and Kiboko-1 in the south of the d...In this study, the secondary well data for Cretaceous to Miocene cutting samples in four deep offshore exploration wells, i.e., Pomboo-1 in the north, Kubwa-1 in the central, Simba-1 and Kiboko-1 in the south of the deep offshore Lamu Basin were assessed for identifying source rock presence and examining thermal maturity of the source rocks. The 2D basin modelling was used to analyse the bulk gas transformation in the basin. Total organic carbon (TOC) content values for the wells range from 0.09 wt % to 2.23 wt % with an average of 0.78 wt %. The average organic richness is higher in the Upper Cretaceous (0.83 wt %) than in the Palaeogene (0.65 wt %), Lower Cretaceous (0.28 wt %) and Upper Jurassic (0.30 wt %). The S_(1) averages for the Upper Cretaceous are 3.76 mg HC/g rock in Pomboo-1 and 0.31mg HC/g rock in Kubwa-1. The S_(2) averages for the Upper Cretaceous are 5.00 mg HC/g rock in Pomboo-1 and 0.72 mg HC/g rock in Kubwa-1. Hydrogen index (HI) values vary between 4 and 512 mg HC/g TOC with an average of 157.09 mg HC/g TOC. Organic matters were identified as mixed types of Ⅱ-Ⅲ (oil and gas prone) and Ⅲ-Ⅳ (gas prone) kerogen in the potential source rocks. The HI and S_(2) yield values are exceptionally high for the observed TOC values in Pomboo-1. The vitrinite reflectance and Tmax values of deep offshore Lamu Basin are in the ranges of 0.38%–0.72% and 360–441 ℃, respectively. It suggests the existence of both immature and mature source rocks. Vitrinite reflectance maturity favours near coastal region in the Upper Cretaceous. These results explain why Pomboo-1, Kubwa-1, Simba-1 and Kiboko-1 wells were dry. The temperatures are still cool for hydrocarbon generation in deep offshore. The critical risk for deep offshore Lamu Basin is charge, primarily source presence, and a lack of definitive evidence of a deep-water marine source rock being present. The four wells penetrate good quality reservoir and seal rocks, but source rock presence and maturity remain the critical play risk in the deep offshore Lamu Basin.展开更多
Fluid inclusion signal strength and visual inclusion abundance are generally lower along migration pathways than in charged reservoirs from the same area. A zone that displays strong fluid inclusion stratigraphy (FIS)...Fluid inclusion signal strength and visual inclusion abundance are generally lower along migration pathways than in charged reservoirs from the same area. A zone that displays strong fluid inclusion stratigraphy (FIS) hydrocarbon indications and high visualized petroleum inclusion abundance, indicates paleo-charge or in some cases a migration pathway, e.g, where inclusion abundance is enhanced by extensive microfracturing. In this study, fluid inclusion data are interpreted in seven offshore wells of the Lamu Basin to enhance the understanding of hydrocarbon generation, migration and migration pathways. The study also examines the interrelationship among rock texture, rock composition and trapped fluid distribution in the study area. The studies were based on FIS analyzed data courtesy of Fluid Inclusion Technologies (FIT) Inc. in USA laboratories. FIT conducted analysis on 391 samples from the Paleocene to Upper Jurassic (Kiboko-1 well), 249 from the Paleoecene to Campanian (Kubwa-1 well), 106 from the Maastrichtian to Turonian (Mbawa-1 well), 59 from the Eocene to Campanian (Pomboo-1 well), 26 form the Lower Eocene to Maastrichtian (Simba-1 well), 16 from the Eocene to Maastrichtian (Kipini-1 well) and 11 from the Maastrichtian to Campanian (Kofia-1 well). It also made analysis on sidewall core sample plates, with 44 from the Maastrichtian to Campanian (Kubwa-1 well), 108 from the Campanian to Upper Jurassic (Kiboko-1 well) and 8 from the Campanian (Pomboo-1 well) for petrographic evaluation. For photomicroscopy, thin sections were examined under a petrographic microscope using Ultra Violet (UV) fluorescence and microthermometry, in order to verify the presence of petroleum bearing inclusions in the rock samples and to explore textural relationships that may yield additional information on the timing of hydrocarbon migration or generation. Gas shows in Mbawa-1 well is a result of generated hydrocarbons from the carbonate interbeds in the Upper Cretaceous. Gas shows are pockets trapped in the thin carbonate rich beds. There is low abundance of upper-low, moderate and upper-moderate gravity liquid petroleum inclusions in Kubwa-1 well (central deep offshore). The low abundance suggests migration events rather than paleo-accumulations, possibly involving several discrete charges. Despite sufficient vitrinite reflectance and total organic carbon (TOC) content, the temperatures are still insufficient for hydrocarbon generation in the southern deep offshore in the region where Kiboko-1 well is located. There is no sufficient evidence for access to mature source rocks in the deep offshore basin.展开更多
Strata erosion is a widespread phenomenon in sedimentary basins. The generation, migration, and accumulation of hydrocarbon is influenced by the scale of erosion, so estimating the amount of erosion is essential in th...Strata erosion is a widespread phenomenon in sedimentary basins. The generation, migration, and accumulation of hydrocarbon is influenced by the scale of erosion, so estimating the amount of erosion is essential in the analysis of oil and gas bearing basins. According to the geological features in the Subei Basin and the actual data, using the integrated method, we estimated the level of erosion at the unconformities caused by the Sanduo event. By using the mudstone interval transit time method and the vitrinite reflectance method on data from typical wells, it can be concluded that the Gaoyou, Jinhu, and Hongze depressions suffered strong strata erosion from the late Eocene to Oligocene, and the total strata erosion thickness was 300–1,100 m. Different tectonic units in the same depression have extremely uneven erosion intensity: the low convex regions have the maximum erosion thickness, amounting to 800–1,100 m; the slope regions have an erosion thickness of generally 600–800 m; the erosion thickness of the slope-hollow transition zone is 300–500 m. For the whole basin, we used the strata thickness trend analysis method combined with the interval transit time and vitrinite reflectance methods to estimate the erosion thickness in the Sanduo period. The results show that the most severe erosion of the Sanduo event in the Subei Basin is between 1,000 m to 1,200 m, mainly located in depressions around the Jianhu Uplift; the deep hollow area has the least erosion, generally about 300–600 m, and the erosion in the slope area is about 600–900 m. Compared with the northern part, the southern part has relatively little erosion. It is also proved that the Sanduo movement has heterogeneous intensity, and the western region has greater intensity than the eastern region.展开更多
The Songliao Basin is famous for the Daqing Oilfield, the biggest in China. However, no economic hydrocarbon reservoir has been found in the northeastern Binbei district. Its thermal history, which is of great importa...The Songliao Basin is famous for the Daqing Oilfield, the biggest in China. However, no economic hydrocarbon reservoir has been found in the northeastern Binbei district. Its thermal history, which is of great importance for hydrocarbon generation and migration, is studied with apatite fission track (AFT) thermochronology. Samples with depositional ages of the late Cretaceous (-108-73 Ma) are analyzed. The AFT ages of the samples from reservoir rock (depositional age 〉 76.1 Ma) fall between the late Cretaceous (724-5 Ma) and the early Eocene (414-3 Ma) period, indicating their total annealing after deposition. In contrast, two samples from the main seals of the Qingshankou (depositional age 〉 89.3 Ma) and the Nenjiang Formation (depositional age 〉 73.0 Ma) are not annealed or partially annealed (AFT ages of 974-9 Ma and 704-4 Ma, respectively). Because the maximum burial temperature (〈90 ℃) evidenced by low vitrinite reflectance (Ro〈0.7) is not high enough to account for the AFT total annealing (110-120 ℃), the transient thermal effect arising from the syntectonic fluid flow between the late Cretaceous and the early Eocene is proposed. Transient thermal effects from fluid flow explains the indicated temperature discrepancies between the AFT thermometer and the Ro thermometer because the transient thermal effect from the fluid flow with a temperature high enough (110-120 ℃) to anneal the AFT thermometer does not last long enough (104-105 yrs.) for an enhancement of the Ro (minimum 106- 107 yrs. under the same temperature). This indicates that dating thermal effect from fluid flow might be a new means to reconstruct the tectonic history. It also answers why the samples from the main seals are not annealed because the seals will prohibit fluid flow and supply good thermal insulation. The large-scale fluid flow in the Binbei district calls for a new idea to direct the hydrocarbon exploration.展开更多
The Devonian Woodford Shale in the Anadarko Basin is a highly organic,hydrocarbon source rock.Accurate values of vitrinite reflectance(R_o)present in the Woodford Shale penetrated by 52 control wells were measured dir...The Devonian Woodford Shale in the Anadarko Basin is a highly organic,hydrocarbon source rock.Accurate values of vitrinite reflectance(R_o)present in the Woodford Shale penetrated by 52 control wells were measured directly.These vitrinite reflectance values,when plotted against borehole resistivity for the middle member of the Woodford Shale in the wells,display a rarely reported finding that deep resistivity readings decrease as R_o increases when R_o is greater than 0.90%.This phenomenon may be attributed to that aromatic and resin compounds containing conjugated pi bonds generated within source rocks are more electrically conductive than aliphatic compounds.And aromatic and resin fractions were generated more than aliphatic fraction when source rock maturity further increases beyond oil peak.The finding of the relationship between deep resistivity and R_o may re-investigate the previously found linear relationship between source rock formation and aid to unconventional play exploration.展开更多
Based on 991 groups of analysis data of shale samples from the Lower Member of the Cretaceous Eagle Ford Formation of 1317 production wells and 72 systematic coring wells in the U.S. Gulf Basin, the estimated ultimate...Based on 991 groups of analysis data of shale samples from the Lower Member of the Cretaceous Eagle Ford Formation of 1317 production wells and 72 systematic coring wells in the U.S. Gulf Basin, the estimated ultimate recovery(EUR) of shale oil and gas of the wells are predicted by using two classical EUR estimation models, and the average values predicted excluding the effect of engineering factors are taken as the final EUR. Key geological factors controlling EUR of shale oil and gas are fully investigated. The reservoir capacity, resources, flow capacity and fracability are the four key geological parameters controlling EUR. The storage capacity of shale oil and gas is directly controlled by total porosity and hydrocarbon-bearing porosity, and indirectly controlled by total organic carbon(TOC) and vitrinite reflectance(Ro). The resources of shale oil and gas are controlled by hydrocarbon-bearing porosity and effective shale thickness etc. The flow capacity of shale oil and gas is controlled by effective permeability, crude oil density, gas-oil ratio, condensate oil-gas ratio, formation pressure gradient, and Ro. The fracability of shale is directly controlled by brittleness index, and indirectly controlled by clay content in volume. EUR of shale oil and gas is controlled by six geological parameters: it is positively correlated with effective shale thickness, TOC and fracture porosity, negatively correlated with clay content in volume, and increases firstly and then decreases with the rise of Ro and formation pressure gradient. Under the present upper limit of horizontal well fracturing effective thickness of 65 m and the lower limit of EUR of 3×10^(4) m^(3), when TOC<2.3%, or Ro<0.85%, or clay content in volume larger than 25%, and fractures and micro-fractures aren’t developed, favorable areas of shale oil and gas hardly occur.展开更多
The Sultani oil shale (OS) deposit is considered as a major fossil fuel source in Jordan. Applying various petrographic and geochemical techniques, this paper aims to study the Sultani OS geochemical and organic petro...The Sultani oil shale (OS) deposit is considered as a major fossil fuel source in Jordan. Applying various petrographic and geochemical techniques, this paper aims to study the Sultani OS geochemical and organic petrographic features. Results show that Sultani OS is a bituminous limestone consisting of very fine-grained matrix with rippled micro-laminated texture and muddy material of cryptocrystalline micrite. The rock is rich in Cretaceous microfossil shells filled in organic matter (OM). The fillingOMis bitumen of the migrabitumen type. TheOMcontent reaches up to 17 wt.% with high oil-yielding capacity (up to 12 wt.%). High TOC values suggest that the Sultani OS has a very good source rock potential. Organic petrography shows lowOMmaturity level and reveals two varieties of vitrinite, namely primary and oxidized vitrinite. The latter is derived from terrestrial plant tissues. Additionally, liptinite macerals including alginite and to a lesser extent cutinite, also participate. Various diagenetic features such as pyrite replacement and bitumen thermal alteration have been recorded. Results suggest that Sultani OS is a marinite formed under marine conditions with limited contribution of terrestrialOMinput.展开更多
Sillimanite is a brittle mineral as a metamorphic mineral product which is generally derived from clay, along with an increase in pressure and high temperature (600°C - 900°C), and kaliophilite is also a bri...Sillimanite is a brittle mineral as a metamorphic mineral product which is generally derived from clay, along with an increase in pressure and high temperature (600°C - 900°C), and kaliophilite is also a brittle mineral as a potassium bearing in the sand-shale series, which contributes to the clay diagenesis process. In the development of shale hydrocarbon in the Brownshale formation in the Bengkalis Trough, Central Sumatra Basin, using the correlation of the XRD (bulk and clay oriented), TOC, Ro, and MBT analysis results from the drill cuttings of well BS-03, so that the fracable zone interval can be determined. From this correlation, it shows that the presence of sillimanite and kaliophilite minerals as minor minerals greatly affects the changes in shale character and hydrocarbon generation, where at depth intervals of 10,780 ft downward (sand series-shale) there is an interesting phenomenon, <i>i.e. </i> low MBT, low TOC, and high Ro, so it is believed that the depth interval of 10,780 ft downward is a fracable zone interval (brittle shale) which is a good candidate for hydraulic fracking planning, while the upper depth interval is a fracture barrier.展开更多
The coal petrography of 13 different rank single coals and the quality of cokes made on 40 kg pilot coke oven were measured and analyzed in the paper.The results indicated that the relationship between optical texture...The coal petrography of 13 different rank single coals and the quality of cokes made on 40 kg pilot coke oven were measured and analyzed in the paper.The results indicated that the relationship between optical texture index of coke(OTI) and vitrinite mean maximum reflectance of single coal was positive linear correlation.By multiple linear regression analysis,the quantitative relationship between vitrinite reflectance distribution and the component of coke optical texture were determined;The influence of composition of coke optical tissue on crushing strength for coke(M_(40)) and coke reactivity index(CRI) can be summarized:the more mosaics texture proportion of the optical tissue,the better of crushing strength for coke(M_(40)) and its coke reactivity index(CRI).展开更多
The hydrocarbon generation potential of the Campano-Maastrichtian to Paleogene shales from the Benin Flank(located in SW Nigeria)of the Anambra Basin,has been previously investigated mostly by studying outcrops and by...The hydrocarbon generation potential of the Campano-Maastrichtian to Paleogene shales from the Benin Flank(located in SW Nigeria)of the Anambra Basin,has been previously investigated mostly by studying outcrops and by relatively few subsurface data-based studies.Thus,it is expedient undertaking an assessment of the hydrocarbon generation potential of this frontier area from subsurface samples.Campano-Maastrichtian to Paleogene shale samples obtained from Egoli-1 borehole in the Benin Flank of the Anambra Basin are studied by means of HAWK programmed pyrolysis,organic petrography,and mineralogy(XRD),with the aim to explore the petroleum-generating potential and the thermal maturity.The obtained results display a significant variation of the TOC content ranging from very low(<0.5%)to significant(>5%),indicating poor to excellent oil potential based on S_(2)values under the condition,of course,the studied formations reached the oil window.The shales of the Nsukka and Imo Formations display lower petroleum-generating potential than these of the Mamu Formation.All the studied samples are dominated by gas-prone(type III)and inert(type IV)kerogens,with few displaying mixed II/III(oil-and gas-prone).The organic-petrography observations support partly the results of the HAWK programmed pyrolysis,as they reveal an organic-richer Mamu Formation in comparison to the Nsukka and Imo Formations;huminite/vitrinite particles(both indigenous and recycled)along with variable contents of liptinite(mostly alginite and bituminite)and inertinite macerals(mostly inertodetrinite)are hosted in the shales.The latter display a typical composition for fine-grained clastic sediments;mostly kaolinite,illite/montmorillonite,quartz,and subordinately,anatase.In terms of thermal maturity,huminite/vitrinite reflectance data points to immature stage;however,the occurrence of solid bitumens,displaying equivalent vitrinite reflectance values within the oil window,points to an active petroleum system in sequences deeper than the examined ones.展开更多
This paper focuses on determining total organic carbon(TOC)from boreholes in the Kalahari Basin,Botswana,using Passey's method.The Kalahari Karoo basin is one of several basins in southern Africa filled with Late ...This paper focuses on determining total organic carbon(TOC)from boreholes in the Kalahari Basin,Botswana,using Passey's method.The Kalahari Karoo basin is one of several basins in southern Africa filled with Late Carboniferous to Jurassic sedimentary strata that host Permian age coal seams.Nine exploration boreholes(wells)drilled in the central Kalahari Karoo basin are used to determine the Total Organic Carbon potential.Vitrinite reflectance(Ro),proximate and ultimate analyses were conducted on cored coal intervals.Passey's DLogR method applied in this study employs resistivity and porosity logs to identify and quantify potential source rocks.Results of Passey's method compared with laboratorymeasured carbon showed that Passey's method effectively identifies coal intervals.In terms of TOC calculations,the method works poorly in coal metamorphosed by dolerite intrusions.The heat affected coal samples had Ro from 0.77% to 5.53% and increased in maturity from primarily maceral controlled to high volatile bituminous and anthracite coal.Results from proximate analysis showed compositional changes in the coal were controlled by proximity to sill intrusion,with a decrease in Fixed Carbon and an increase in ash yield in the contact metamorphism zone(2-12 m from sill).For the unaltered coal that has undergone burial maturation displaying Ro of 0.44%-0.65%,the method works well.In unintruded boreholes,correlations between Carbon and calculated TOC indicate strong relationships.Passey's DLogR method proved to be a suitable method of estimating TOC on coal that has undergone burial maturation.This study has demonstrated that TOC calculated from the sonic log is more reliable in coal not affected by contact metamorphism than TOC calculated from the density log.展开更多
The Sichuan Basin is a superimposition basin composed of terrestrial and marine sediments that is well known for its abundant petroleum resources. Thermal history reconstruction using paleogeothermal indicators, inclu...The Sichuan Basin is a superimposition basin composed of terrestrial and marine sediments that is well known for its abundant petroleum resources. Thermal history reconstruction using paleogeothermal indicators, including vitrinite reflectahoe and thermochronological data, shows that different structural subsections of the Sichuan Basin have experienced various paleogeothermal episodes since the Paleozoic. The lower structural subsection comprising the Lower Paleozoic to Middle Permian (Pz-P2) successions experienced a high paleogeothermal gradient (23.0-42.6℃/km) at the end of the Middle Permian (P2), whereas the upper structural subsection comprising Late Permian to Mesozoic strata underwent a relatively lower paleogeothermal gradient (13.2-26.9℃/km) at the beginning of the denudation (Late Cretaceous or Paleocene in the different regions). During the denudation period, the Sichuan Basin experienced a successive cooling episode. The high paleogeothermal gradient resulted from an intensive thermal event correlated to the Emeishan mantle plume. The heat flow value reached 124.0 mW/m2 in the southwestern basin near the center of the Emeishan large igneous province. The low geothermal gradient episode with heat flow ranging from 31.2 to 70.0 mW/m2 may be related to the foreland basin evolution. The cooling event is a result of the continuous uplift and denudation of the basin.展开更多
The thermal history of sedimentary basins is a key factor for hydrocarbon accumulation and resource assessment, and is critical in the exploration of lithospheric tectono-thermal evolution. In this paper, the Cenozoic...The thermal history of sedimentary basins is a key factor for hydrocarbon accumulation and resource assessment, and is critical in the exploration of lithospheric tectono-thermal evolution. In this paper, the Cenozoic thermal histories of nearly 200 wells and the Mesozoic thermal histories of 15 wells are modeled based on the vitrinite reflectance and apatite fission track data in Bohai Bay Basin, North China. The results show that the basin experienced Early Cretaceous and Paleogene heat flow peaks, which reveals two strong rift tectonic movements that occurred in the Cretaceous and the Paleogene in the basin, respectively. The thermal evolution history in Bohai Bay Basin can be divided into five stages including(1) the low and stable heat flow stage from the Triassic to the Jurassic, with the heat flow of 53 to 58 m W/m2;(2) the first heat flow peak from the Early Cretaceous to the middle of the Late Cretaceous, with a maximum heat flow of 81 to 87 m W/m2;(3) the first post-rift thermal subsidence stage from the middle of the Late Cretaceous to the Paleocene, with the heat flow of 65 to 74 m W/m2 at the end of the Cretaceous;(4) the second heat flow peak from the Eocene to the Oligocene, with a maximum heat flow of 81 to 88 m W/m2; and(5) the second thermal subsidence stage from the Neogene to present, with an average heat flow of 64 m W/m2.展开更多
The identification of the origin and source of natural gas is always a difficult and hot issue.Hereinto,the maturity identification is one of the most important scientific problems.Many empirical equations have been e...The identification of the origin and source of natural gas is always a difficult and hot issue.Hereinto,the maturity identification is one of the most important scientific problems.Many empirical equations have been established to decipher the relationship between the maturity of gas source rocks and the carbon isotopic composition of natural gas.However,these equations proposed often fail to identify the maturity of the source rocks correctly,which in turn prevents the identification of genetic types and source rocks of the natural gas because the petroliferous sedimentary basins in China are complex and diverse,with multiple sets of source rocks and different thermal history.In this paper,the oil-associated gas from the Permian lacustrine source rocks and the coal-derived gas from the Jurassic source rocks in Junggar and Turpan-Hami basins have been investigated to decipher the relationship between the maturity(vitrinite reflectance)of gas source rocks and the carbon isotopic composition of methane.The equations established areδ^(13)C_(1)=25lgR_(o)-42.5 for oil-associated gas,andδ^(13)C_(1)=25lgR_(o)-37.5 for coal-derived gas.These new equations are suitable for the maturity identification of source rocks in most petroliferous basins,and favorable for the identification of the genetic type and source of natural gas,which is very important to improve the geological theory of natural gas.展开更多
文摘The resource of the gas from coal and coal measures deep in Songliao Basin has been drawing more and more attention to . It is necessary to find out the evolution regularity of the geothermal field of the basin in addition to a series of geological studies in order to predict its resources because the ancient geothermal field of the basin is one of the main factors controlling the generation , evolution and disappearance of oil and gas . In the recent twenty years , it is generally believed that vitrinite reflectance is the best quantitative marker for the ancient geothermal field . In the present paper , a systematic study of the vitrinite reflectance value of Songliao Basin and its influence factors is made by multiple statistical analysis so as to reconstruct the evolutional process of the Moho and the corresponding geothermal field . Then , an overall prediction is made of the vitrinite reflectance and the distribution of J3-K1 fault basin group at the bottom of Songliao Basin , which provides the evidence for the further prediction of the gas potentiality from coal and coal measures deep in the basin .
文摘The law of mathematical statistics, which the coal vitrinite reflectance index obeys, the existing vitrinite representing deviations, and the advantages of judging coalification and the shortage of judging coal type were analyzed. The advantages and disadvantages of various determination methods and the expression index and different methods of identifying vitrinite on the determination results were compared. The vitality of coal vitrinite reflectance depends on its full play the unique function of reflectance histogram and the systematic errors between different determination methods do not affect the application based on reflectance histogram are considered.
基金partially supported by the Graduate Student Research Grants from the Gulf Coast Association of Geological Societies (GCAGS)American Association of Petroleum Geologist (AAPG)by the University of Texas at Arlington and by the Pioneer Natural Resources
文摘Thermal maturity is commonly assessed by various geochemical screening methods(e.g.,pyrolysis and organic petrology).In this contribution,we attempt to establish an alternative approach to estimating thermal maturity with Raman spectroscopy,using 24 North American oil shale samples with thermal maturity data generated by vitrinite reflectance(VRo%)and pyrolysis(Tmax)-based maturity calculation(VRe%).The representative shale samples are from the Haynesville(East Texas),Woodford(West Texas),Eagle Ford and Pearsall(South Texas)Formations,as well as Gothic,Mancos,and Niobrara Formation shales(all from Colorado).The Raman spectra of disordered carbonaceous matter(D1 and G bands separation)of these samples were directly obtained from the rock chips without prior sample preparation.Using the Gaussian and Lorentzian distribution approach,thermal maturities from VR were correlated with carbon G and D1.We found that the Raman band separation(RBS)displayed a better correlation for equivalent VRe%than vitrinite reflectance VRo%.The RBS(D1–G)distance versus total organic carbon,free hydrocarbons from thermal extraction(S1),and the remaining hydrocarbon generating potential(S2)indicate that the RBS(D1–G)distance is also related to kerogen type.Data presented here from three methods of maturity determination of shale demonstrate that Raman spectroscopy is a quick and valid approach to thermal maturity assessment.
基金This paper is supported by China Offshore Petroleum Exploration Development Corporation.
文摘Based on the models developed by Lerche et al. (1984) and Pang et al. (1993), an improved model for calculating paleoheat flow into basins is investigated. The new model is an optimization problem with the state variables governed by a thermal conduction equation. A genetic algorithm is used to solve the highly nonlinear optimization problem. As an application, the model is applied to the research into the history of heat flow in the Pearl River Mouth basin located in the South China Sea. The numerical analysis shows that the simulation results are in good agreement with the measured data and indicates that the basin may have undergone three rifting and thermal events. It is also demonstrated that a high R0 gradient reflects a response to high paleoheat flow during the early, rapid subsidence stage, while a low R0 gradient is a result of the thermal decay during the thermal subsidence because of thermal contraction of a cooling lithosphere.
文摘Three typical vitrinite reflectance (R0) proriles from Pearl River Mouth, Qiongdongnan and Beibuwan basins on the nortbern condsental shelf or the South China Sea display two or more different sub-linear slope relationships between IgR0 and deptb. According to the reconstruction of sedimentary and burial histories for these wells, a relatively large R0 gradient corresponds to a high depositional rate, while a relatively small R0 gradieut represeuts a low depositional rate. In this study, a modiried thermal backstripping model for paleokeat fIow using vitrinite reflectance data has been used to reconstruct paleotbermal history by the linear-segmeut regression. Tke study results indicate that the gentle parts of a IgR0 profile rerlect abnormai periods or high paleoheat flow, in contrast, the steep parts of a IgR0 profile reflect periods of peleoheat flow decay.In order to have an alternative approach and correlative study, an improved two-layer extensional model for the formation and evolution or rifting basin iu pesive contiueutal margin bas been applied. The model simulates basin subsidence process due to stretcbing and thinuing of continental lithospbere and thermal effects by asthenospbere upwelling, and determines the relationship between subsidence and paleoheat flux through the geological time. The simulation results suggest that these basins have undergone two or three rirting and thermal events, and it is clear that the large R0 gradient segment reflects a response to high paleoheat flow during the early, rapid subsidence stage, while the low R. gradient segmeut is a result or the tbermal decay during the thermal subsidence because of thermal contraction of a cooling Iitbospbere. The results also suggest that the maturity profiles of these basins can be employed to visual understanding tke paleogeothermal characteristics of rifting basins.
文摘The ever-increasing demand for oil and gas has driven its exploration in rather extreme conditions. In Lamu offshore, which is hitherto underexplored, most of the wells already drilled turned out dry save for a few wells with hydrocarbon shows despite the promising reservoir properties and related geological structures. This, therefore, necessitated a source rock evaluation study in the area to ascertain the presence and potential of the source rock by integrating the geochemical data analysis and petroleum system modeling. The shallow Lamu offshore source rock quantity, quality, and maturity have been estimated through the determination of the total organic carbon (TOC) average values, Kerogen typing, and Rock-Eval pyrolysis measurements respectively. Geochemical data for Kubwa-1, Mbawa-1, Pomboo-1, and Simba-1 were evaluated for determining the source rock potential for hydrocarbon generation. Petroleum system modeling was applied in evaluating geological conditions necessary for a successful charge within a software that integrated geochemical and petrophysical characterization of the sedimentary formations in conjunction with boundary conditions that include basal heat flow, sediment-water interface temperature, and Paleo-water depth. The average TOC of 0.89 wt % in the study area suggests a fair organic richness which seems higher in the late cretaceous (0.98 wt %) than in the Paleocene (0.81 wt %). Vitrinite reflectance and T<sub>max</sub> values in the study area indicate the possible presence of both mature and immature source rocks. Type III Kerogen was the most dominant Kerogen type, and gas shows are the most frequent hydrocarbon encountered in the Lamu Basin with a few cases registering type II/III and type II. The charge properties (i.e. Temperature, transformation ratio, and Vitrinite reflectance) over geologic time at each of the wells have been estimated and their spatial variation mapped as seen from the burial history and depth curves overlaid with temperature, transformation ratio, and Vitrinite reflectance respectively. From the upper cretaceous maturity maps, the results seem to favor near coastal regions where average TOC is about 1.4 wt %, Vitrinite reflectance is more than 0.5%, transformation ratio is more than 10%, and temperatures range from 80°C to 160°C. The results postulate the absence of a definitive effective source rock with a likelihood of having cases of potential and possible source rocks. Moreover, greater uncertainty rests on the source rock’s presence and viability tending toward the deep offshore. Geochemical analysis and petroleum system modeling for hydrocarbon source rock evaluation improved the understanding of the occurrence of the possible and potential source rocks and processes necessary for hydrocarbon generation.
文摘In this study, the secondary well data for Cretaceous to Miocene cutting samples in four deep offshore exploration wells, i.e., Pomboo-1 in the north, Kubwa-1 in the central, Simba-1 and Kiboko-1 in the south of the deep offshore Lamu Basin were assessed for identifying source rock presence and examining thermal maturity of the source rocks. The 2D basin modelling was used to analyse the bulk gas transformation in the basin. Total organic carbon (TOC) content values for the wells range from 0.09 wt % to 2.23 wt % with an average of 0.78 wt %. The average organic richness is higher in the Upper Cretaceous (0.83 wt %) than in the Palaeogene (0.65 wt %), Lower Cretaceous (0.28 wt %) and Upper Jurassic (0.30 wt %). The S_(1) averages for the Upper Cretaceous are 3.76 mg HC/g rock in Pomboo-1 and 0.31mg HC/g rock in Kubwa-1. The S_(2) averages for the Upper Cretaceous are 5.00 mg HC/g rock in Pomboo-1 and 0.72 mg HC/g rock in Kubwa-1. Hydrogen index (HI) values vary between 4 and 512 mg HC/g TOC with an average of 157.09 mg HC/g TOC. Organic matters were identified as mixed types of Ⅱ-Ⅲ (oil and gas prone) and Ⅲ-Ⅳ (gas prone) kerogen in the potential source rocks. The HI and S_(2) yield values are exceptionally high for the observed TOC values in Pomboo-1. The vitrinite reflectance and Tmax values of deep offshore Lamu Basin are in the ranges of 0.38%–0.72% and 360–441 ℃, respectively. It suggests the existence of both immature and mature source rocks. Vitrinite reflectance maturity favours near coastal region in the Upper Cretaceous. These results explain why Pomboo-1, Kubwa-1, Simba-1 and Kiboko-1 wells were dry. The temperatures are still cool for hydrocarbon generation in deep offshore. The critical risk for deep offshore Lamu Basin is charge, primarily source presence, and a lack of definitive evidence of a deep-water marine source rock being present. The four wells penetrate good quality reservoir and seal rocks, but source rock presence and maturity remain the critical play risk in the deep offshore Lamu Basin.
文摘Fluid inclusion signal strength and visual inclusion abundance are generally lower along migration pathways than in charged reservoirs from the same area. A zone that displays strong fluid inclusion stratigraphy (FIS) hydrocarbon indications and high visualized petroleum inclusion abundance, indicates paleo-charge or in some cases a migration pathway, e.g, where inclusion abundance is enhanced by extensive microfracturing. In this study, fluid inclusion data are interpreted in seven offshore wells of the Lamu Basin to enhance the understanding of hydrocarbon generation, migration and migration pathways. The study also examines the interrelationship among rock texture, rock composition and trapped fluid distribution in the study area. The studies were based on FIS analyzed data courtesy of Fluid Inclusion Technologies (FIT) Inc. in USA laboratories. FIT conducted analysis on 391 samples from the Paleocene to Upper Jurassic (Kiboko-1 well), 249 from the Paleoecene to Campanian (Kubwa-1 well), 106 from the Maastrichtian to Turonian (Mbawa-1 well), 59 from the Eocene to Campanian (Pomboo-1 well), 26 form the Lower Eocene to Maastrichtian (Simba-1 well), 16 from the Eocene to Maastrichtian (Kipini-1 well) and 11 from the Maastrichtian to Campanian (Kofia-1 well). It also made analysis on sidewall core sample plates, with 44 from the Maastrichtian to Campanian (Kubwa-1 well), 108 from the Campanian to Upper Jurassic (Kiboko-1 well) and 8 from the Campanian (Pomboo-1 well) for petrographic evaluation. For photomicroscopy, thin sections were examined under a petrographic microscope using Ultra Violet (UV) fluorescence and microthermometry, in order to verify the presence of petroleum bearing inclusions in the rock samples and to explore textural relationships that may yield additional information on the timing of hydrocarbon migration or generation. Gas shows in Mbawa-1 well is a result of generated hydrocarbons from the carbonate interbeds in the Upper Cretaceous. Gas shows are pockets trapped in the thin carbonate rich beds. There is low abundance of upper-low, moderate and upper-moderate gravity liquid petroleum inclusions in Kubwa-1 well (central deep offshore). The low abundance suggests migration events rather than paleo-accumulations, possibly involving several discrete charges. Despite sufficient vitrinite reflectance and total organic carbon (TOC) content, the temperatures are still insufficient for hydrocarbon generation in the southern deep offshore in the region where Kiboko-1 well is located. There is no sufficient evidence for access to mature source rocks in the deep offshore basin.
文摘Strata erosion is a widespread phenomenon in sedimentary basins. The generation, migration, and accumulation of hydrocarbon is influenced by the scale of erosion, so estimating the amount of erosion is essential in the analysis of oil and gas bearing basins. According to the geological features in the Subei Basin and the actual data, using the integrated method, we estimated the level of erosion at the unconformities caused by the Sanduo event. By using the mudstone interval transit time method and the vitrinite reflectance method on data from typical wells, it can be concluded that the Gaoyou, Jinhu, and Hongze depressions suffered strong strata erosion from the late Eocene to Oligocene, and the total strata erosion thickness was 300–1,100 m. Different tectonic units in the same depression have extremely uneven erosion intensity: the low convex regions have the maximum erosion thickness, amounting to 800–1,100 m; the slope regions have an erosion thickness of generally 600–800 m; the erosion thickness of the slope-hollow transition zone is 300–500 m. For the whole basin, we used the strata thickness trend analysis method combined with the interval transit time and vitrinite reflectance methods to estimate the erosion thickness in the Sanduo period. The results show that the most severe erosion of the Sanduo event in the Subei Basin is between 1,000 m to 1,200 m, mainly located in depressions around the Jianhu Uplift; the deep hollow area has the least erosion, generally about 300–600 m, and the erosion in the slope area is about 600–900 m. Compared with the northern part, the southern part has relatively little erosion. It is also proved that the Sanduo movement has heterogeneous intensity, and the western region has greater intensity than the eastern region.
基金supported by the National Natural Science Foundation of China (Grant Nos.40872097 and 41272161)the Major National Science & Technology Program (Grant Nos.2011ZX05006-005 and 2011ZX05006-006)partly funded by the State Key Laboratory for Petroleum Resource and Prospecting (Grant No.KYJJ2012-01-12)
文摘The Songliao Basin is famous for the Daqing Oilfield, the biggest in China. However, no economic hydrocarbon reservoir has been found in the northeastern Binbei district. Its thermal history, which is of great importance for hydrocarbon generation and migration, is studied with apatite fission track (AFT) thermochronology. Samples with depositional ages of the late Cretaceous (-108-73 Ma) are analyzed. The AFT ages of the samples from reservoir rock (depositional age 〉 76.1 Ma) fall between the late Cretaceous (724-5 Ma) and the early Eocene (414-3 Ma) period, indicating their total annealing after deposition. In contrast, two samples from the main seals of the Qingshankou (depositional age 〉 89.3 Ma) and the Nenjiang Formation (depositional age 〉 73.0 Ma) are not annealed or partially annealed (AFT ages of 974-9 Ma and 704-4 Ma, respectively). Because the maximum burial temperature (〈90 ℃) evidenced by low vitrinite reflectance (Ro〈0.7) is not high enough to account for the AFT total annealing (110-120 ℃), the transient thermal effect arising from the syntectonic fluid flow between the late Cretaceous and the early Eocene is proposed. Transient thermal effects from fluid flow explains the indicated temperature discrepancies between the AFT thermometer and the Ro thermometer because the transient thermal effect from the fluid flow with a temperature high enough (110-120 ℃) to anneal the AFT thermometer does not last long enough (104-105 yrs.) for an enhancement of the Ro (minimum 106- 107 yrs. under the same temperature). This indicates that dating thermal effect from fluid flow might be a new means to reconstruct the tectonic history. It also answers why the samples from the main seals are not annealed because the seals will prohibit fluid flow and supply good thermal insulation. The large-scale fluid flow in the Binbei district calls for a new idea to direct the hydrocarbon exploration.
基金funded by the Foundation of State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum,Beijing(No.PRP/open-1605)partly supported by the Open Fund of Key Laboratory of Exploration Technologies for Oil and Gas Resources(Yangtze University),Ministry of Education(No.K2017-18)Tight Oil Enrichment and Key Exploration and Development Technology Project of National Science and Technology Major Project(Nos.2016ZX05046-002 and 2016ZX05047-005)
文摘The Devonian Woodford Shale in the Anadarko Basin is a highly organic,hydrocarbon source rock.Accurate values of vitrinite reflectance(R_o)present in the Woodford Shale penetrated by 52 control wells were measured directly.These vitrinite reflectance values,when plotted against borehole resistivity for the middle member of the Woodford Shale in the wells,display a rarely reported finding that deep resistivity readings decrease as R_o increases when R_o is greater than 0.90%.This phenomenon may be attributed to that aromatic and resin compounds containing conjugated pi bonds generated within source rocks are more electrically conductive than aliphatic compounds.And aromatic and resin fractions were generated more than aliphatic fraction when source rock maturity further increases beyond oil peak.The finding of the relationship between deep resistivity and R_o may re-investigate the previously found linear relationship between source rock formation and aid to unconventional play exploration.
基金Supported by the PetroChina Science and Technology Department Project(2012A-4802-02)National Key Basic Research and Development Program(2014CB239000)。
文摘Based on 991 groups of analysis data of shale samples from the Lower Member of the Cretaceous Eagle Ford Formation of 1317 production wells and 72 systematic coring wells in the U.S. Gulf Basin, the estimated ultimate recovery(EUR) of shale oil and gas of the wells are predicted by using two classical EUR estimation models, and the average values predicted excluding the effect of engineering factors are taken as the final EUR. Key geological factors controlling EUR of shale oil and gas are fully investigated. The reservoir capacity, resources, flow capacity and fracability are the four key geological parameters controlling EUR. The storage capacity of shale oil and gas is directly controlled by total porosity and hydrocarbon-bearing porosity, and indirectly controlled by total organic carbon(TOC) and vitrinite reflectance(Ro). The resources of shale oil and gas are controlled by hydrocarbon-bearing porosity and effective shale thickness etc. The flow capacity of shale oil and gas is controlled by effective permeability, crude oil density, gas-oil ratio, condensate oil-gas ratio, formation pressure gradient, and Ro. The fracability of shale is directly controlled by brittleness index, and indirectly controlled by clay content in volume. EUR of shale oil and gas is controlled by six geological parameters: it is positively correlated with effective shale thickness, TOC and fracture porosity, negatively correlated with clay content in volume, and increases firstly and then decreases with the rise of Ro and formation pressure gradient. Under the present upper limit of horizontal well fracturing effective thickness of 65 m and the lower limit of EUR of 3×10^(4) m^(3), when TOC<2.3%, or Ro<0.85%, or clay content in volume larger than 25%, and fractures and micro-fractures aren’t developed, favorable areas of shale oil and gas hardly occur.
文摘The Sultani oil shale (OS) deposit is considered as a major fossil fuel source in Jordan. Applying various petrographic and geochemical techniques, this paper aims to study the Sultani OS geochemical and organic petrographic features. Results show that Sultani OS is a bituminous limestone consisting of very fine-grained matrix with rippled micro-laminated texture and muddy material of cryptocrystalline micrite. The rock is rich in Cretaceous microfossil shells filled in organic matter (OM). The fillingOMis bitumen of the migrabitumen type. TheOMcontent reaches up to 17 wt.% with high oil-yielding capacity (up to 12 wt.%). High TOC values suggest that the Sultani OS has a very good source rock potential. Organic petrography shows lowOMmaturity level and reveals two varieties of vitrinite, namely primary and oxidized vitrinite. The latter is derived from terrestrial plant tissues. Additionally, liptinite macerals including alginite and to a lesser extent cutinite, also participate. Various diagenetic features such as pyrite replacement and bitumen thermal alteration have been recorded. Results suggest that Sultani OS is a marinite formed under marine conditions with limited contribution of terrestrialOMinput.
文摘Sillimanite is a brittle mineral as a metamorphic mineral product which is generally derived from clay, along with an increase in pressure and high temperature (600°C - 900°C), and kaliophilite is also a brittle mineral as a potassium bearing in the sand-shale series, which contributes to the clay diagenesis process. In the development of shale hydrocarbon in the Brownshale formation in the Bengkalis Trough, Central Sumatra Basin, using the correlation of the XRD (bulk and clay oriented), TOC, Ro, and MBT analysis results from the drill cuttings of well BS-03, so that the fracable zone interval can be determined. From this correlation, it shows that the presence of sillimanite and kaliophilite minerals as minor minerals greatly affects the changes in shale character and hydrocarbon generation, where at depth intervals of 10,780 ft downward (sand series-shale) there is an interesting phenomenon, <i>i.e. </i> low MBT, low TOC, and high Ro, so it is believed that the depth interval of 10,780 ft downward is a fracable zone interval (brittle shale) which is a good candidate for hydraulic fracking planning, while the upper depth interval is a fracture barrier.
文摘The coal petrography of 13 different rank single coals and the quality of cokes made on 40 kg pilot coke oven were measured and analyzed in the paper.The results indicated that the relationship between optical texture index of coke(OTI) and vitrinite mean maximum reflectance of single coal was positive linear correlation.By multiple linear regression analysis,the quantitative relationship between vitrinite reflectance distribution and the component of coke optical texture were determined;The influence of composition of coke optical tissue on crushing strength for coke(M_(40)) and coke reactivity index(CRI) can be summarized:the more mosaics texture proportion of the optical tissue,the better of crushing strength for coke(M_(40)) and its coke reactivity index(CRI).
文摘The hydrocarbon generation potential of the Campano-Maastrichtian to Paleogene shales from the Benin Flank(located in SW Nigeria)of the Anambra Basin,has been previously investigated mostly by studying outcrops and by relatively few subsurface data-based studies.Thus,it is expedient undertaking an assessment of the hydrocarbon generation potential of this frontier area from subsurface samples.Campano-Maastrichtian to Paleogene shale samples obtained from Egoli-1 borehole in the Benin Flank of the Anambra Basin are studied by means of HAWK programmed pyrolysis,organic petrography,and mineralogy(XRD),with the aim to explore the petroleum-generating potential and the thermal maturity.The obtained results display a significant variation of the TOC content ranging from very low(<0.5%)to significant(>5%),indicating poor to excellent oil potential based on S_(2)values under the condition,of course,the studied formations reached the oil window.The shales of the Nsukka and Imo Formations display lower petroleum-generating potential than these of the Mamu Formation.All the studied samples are dominated by gas-prone(type III)and inert(type IV)kerogens,with few displaying mixed II/III(oil-and gas-prone).The organic-petrography observations support partly the results of the HAWK programmed pyrolysis,as they reveal an organic-richer Mamu Formation in comparison to the Nsukka and Imo Formations;huminite/vitrinite particles(both indigenous and recycled)along with variable contents of liptinite(mostly alginite and bituminite)and inertinite macerals(mostly inertodetrinite)are hosted in the shales.The latter display a typical composition for fine-grained clastic sediments;mostly kaolinite,illite/montmorillonite,quartz,and subordinately,anatase.In terms of thermal maturity,huminite/vitrinite reflectance data points to immature stage;however,the occurrence of solid bitumens,displaying equivalent vitrinite reflectance values within the oil window,points to an active petroleum system in sequences deeper than the examined ones.
文摘This paper focuses on determining total organic carbon(TOC)from boreholes in the Kalahari Basin,Botswana,using Passey's method.The Kalahari Karoo basin is one of several basins in southern Africa filled with Late Carboniferous to Jurassic sedimentary strata that host Permian age coal seams.Nine exploration boreholes(wells)drilled in the central Kalahari Karoo basin are used to determine the Total Organic Carbon potential.Vitrinite reflectance(Ro),proximate and ultimate analyses were conducted on cored coal intervals.Passey's DLogR method applied in this study employs resistivity and porosity logs to identify and quantify potential source rocks.Results of Passey's method compared with laboratorymeasured carbon showed that Passey's method effectively identifies coal intervals.In terms of TOC calculations,the method works poorly in coal metamorphosed by dolerite intrusions.The heat affected coal samples had Ro from 0.77% to 5.53% and increased in maturity from primarily maceral controlled to high volatile bituminous and anthracite coal.Results from proximate analysis showed compositional changes in the coal were controlled by proximity to sill intrusion,with a decrease in Fixed Carbon and an increase in ash yield in the contact metamorphism zone(2-12 m from sill).For the unaltered coal that has undergone burial maturation displaying Ro of 0.44%-0.65%,the method works well.In unintruded boreholes,correlations between Carbon and calculated TOC indicate strong relationships.Passey's DLogR method proved to be a suitable method of estimating TOC on coal that has undergone burial maturation.This study has demonstrated that TOC calculated from the sonic log is more reliable in coal not affected by contact metamorphism than TOC calculated from the density log.
基金the National Natural Science Foundation of China(Grant No.41102152)the PetroChina Innovation Foundation(Grant No.2013D-5006-0102)+1 种基金the National Basic Research Program of China(Grant No.2012CB214703)the Science Foundation of China University of Petroleum,Beijing(Grant No.YJRC2013-002)
文摘The Sichuan Basin is a superimposition basin composed of terrestrial and marine sediments that is well known for its abundant petroleum resources. Thermal history reconstruction using paleogeothermal indicators, including vitrinite reflectahoe and thermochronological data, shows that different structural subsections of the Sichuan Basin have experienced various paleogeothermal episodes since the Paleozoic. The lower structural subsection comprising the Lower Paleozoic to Middle Permian (Pz-P2) successions experienced a high paleogeothermal gradient (23.0-42.6℃/km) at the end of the Middle Permian (P2), whereas the upper structural subsection comprising Late Permian to Mesozoic strata underwent a relatively lower paleogeothermal gradient (13.2-26.9℃/km) at the beginning of the denudation (Late Cretaceous or Paleocene in the different regions). During the denudation period, the Sichuan Basin experienced a successive cooling episode. The high paleogeothermal gradient resulted from an intensive thermal event correlated to the Emeishan mantle plume. The heat flow value reached 124.0 mW/m2 in the southwestern basin near the center of the Emeishan large igneous province. The low geothermal gradient episode with heat flow ranging from 31.2 to 70.0 mW/m2 may be related to the foreland basin evolution. The cooling event is a result of the continuous uplift and denudation of the basin.
基金The National Natural Science Foundation of China (Nos. 41402219, 41125010, and 91114202)the Key State Science and Technology Project (No. 2011ZX05006) provided the financial support
文摘The thermal history of sedimentary basins is a key factor for hydrocarbon accumulation and resource assessment, and is critical in the exploration of lithospheric tectono-thermal evolution. In this paper, the Cenozoic thermal histories of nearly 200 wells and the Mesozoic thermal histories of 15 wells are modeled based on the vitrinite reflectance and apatite fission track data in Bohai Bay Basin, North China. The results show that the basin experienced Early Cretaceous and Paleogene heat flow peaks, which reveals two strong rift tectonic movements that occurred in the Cretaceous and the Paleogene in the basin, respectively. The thermal evolution history in Bohai Bay Basin can be divided into five stages including(1) the low and stable heat flow stage from the Triassic to the Jurassic, with the heat flow of 53 to 58 m W/m2;(2) the first heat flow peak from the Early Cretaceous to the middle of the Late Cretaceous, with a maximum heat flow of 81 to 87 m W/m2;(3) the first post-rift thermal subsidence stage from the middle of the Late Cretaceous to the Paleocene, with the heat flow of 65 to 74 m W/m2 at the end of the Cretaceous;(4) the second heat flow peak from the Eocene to the Oligocene, with a maximum heat flow of 81 to 88 m W/m2; and(5) the second thermal subsidence stage from the Neogene to present, with an average heat flow of 64 m W/m2.
基金the Scientific Research and Technology Development Project of PetroChina(Grant No.2019A-0209)。
文摘The identification of the origin and source of natural gas is always a difficult and hot issue.Hereinto,the maturity identification is one of the most important scientific problems.Many empirical equations have been established to decipher the relationship between the maturity of gas source rocks and the carbon isotopic composition of natural gas.However,these equations proposed often fail to identify the maturity of the source rocks correctly,which in turn prevents the identification of genetic types and source rocks of the natural gas because the petroliferous sedimentary basins in China are complex and diverse,with multiple sets of source rocks and different thermal history.In this paper,the oil-associated gas from the Permian lacustrine source rocks and the coal-derived gas from the Jurassic source rocks in Junggar and Turpan-Hami basins have been investigated to decipher the relationship between the maturity(vitrinite reflectance)of gas source rocks and the carbon isotopic composition of methane.The equations established areδ^(13)C_(1)=25lgR_(o)-42.5 for oil-associated gas,andδ^(13)C_(1)=25lgR_(o)-37.5 for coal-derived gas.These new equations are suitable for the maturity identification of source rocks in most petroliferous basins,and favorable for the identification of the genetic type and source of natural gas,which is very important to improve the geological theory of natural gas.