Cooling water systems(CWSs)are extensively utilized in various industries to eliminate the excess heat and converse energy.Studies on CWSs mainly concentrated on finding the optimal cooler network structure.In additio...Cooling water systems(CWSs)are extensively utilized in various industries to eliminate the excess heat and converse energy.Studies on CWSs mainly concentrated on finding the optimal cooler network structure.In addition,some works also considered the optimal design under varied operation conditions.However,in these works,once the optimal design of the cooler's network is determined,its arrangement remains fixed and cannot be adapted to accommodate diverse operating conditions.In this work,a flexible topology network concept is proposed to make the adjustment of network structure possible under different operation conditions.The CWS with integrated air cooler and flexible topology network has better overall performance,represented by a mixed integer nonlinear programming(MINLP)model that require advanced tools such as GAMS software.Case studies revealed that the proposed methodology can realize better energy-saving performance,and improve the economic performance under varied operation conditions.The impact of critical flexible nodes on system configuration and economy is achieved by sensitivity analysis.展开更多
In a district heating and cooling system, i.e. Beijing combined heating cooling and power (CHCP) system studied here, the high temperature water generated by two cogeneration plants circulates through a network betwee...In a district heating and cooling system, i.e. Beijing combined heating cooling and power (CHCP) system studied here, the high temperature water generated by two cogeneration plants circulates through a network between the plants and heat substations. At heat substations, the supply water of high temperature from the network drives absorption chillers for air-conditioning in summer and meets space heating demands in winter or domestic hot water demands by heat exchangers in the whole year. The parameters, i.e. supply/return water temperatures in the network, have a great impact on primary energy consumption (PEC) of the absorption chillers, circulation pumps and domestic hot water (DHW), which is studied in this paper.展开更多
This paper describes a new multi-layer complex liquid-cooled Si mirror with 3 cooling ducts in Archimedes spirals. Utilizing the ANSYS program, the structure of the mirror is optimized and the thermal deformation mode...This paper describes a new multi-layer complex liquid-cooled Si mirror with 3 cooling ducts in Archimedes spirals. Utilizing the ANSYS program, the structure of the mirror is optimized and the thermal deformation model of the mirror is simulated. The simulation results show that the mirror has the following advantages: very small amount of surface deformation, uniform distribution of temperature and surface deformation, and fast surface shape restoration. The results of the experiments of thermal deformation and the surface restoration are accurately mapped to the simulation results.展开更多
An electro-optic Q-switched Nd:YAG ceramic laser operating at kHz repetition rate was demonstrated. Thermal induced lens' focus of ceramic rod was measured and compensated by piano-convex cavity structure. Depolariz...An electro-optic Q-switched Nd:YAG ceramic laser operating at kHz repetition rate was demonstrated. Thermal induced lens' focus of ceramic rod was measured and compensated by piano-convex cavity structure. Depolarization loss at different output powers was measured in Nd:YAG single crystal and ceramic lasers. High-energy high-beam-quality laser pulse output was obtained in both laser structures. Pulse energy of about 20 mJ and pulse width of less than 12 ns were achieved, and the average power reached 20 W. The divergence of output laser beam was less than 1.2 mrad, and the beam propagation factor M^2 was about 1.4.展开更多
Two semiconductor saturable absorber mirrors (SESAMs), of which one is coated with 50% reflection film on the top and the other is not, were contrastively studied in passively mode-locked solid-state lasers which we...Two semiconductor saturable absorber mirrors (SESAMs), of which one is coated with 50% reflection film on the top and the other is not, were contrastively studied in passively mode-locked solid-state lasers which were pumped by low output power laser diode (LD). Experiments have shown that reducing the modulation depth of SESAM by coating partial reflection film, whose reflectivity is higher than that between SESAM and air interface, is an effective method to get continuous wave (CW) mode-locking instead of Q-switched mode-locking (QML) in low power pumped solid-state lasers. A simple Nd:YVO4 laser pumped by low power LD, in which no water-cooling system was used, could obtain CW mode-locking by the 50% reflector coated SESAM with average output power of ~ 20 mW.展开更多
基金Financial support from the National Natural Science Foundation of China under Grant(Nos.22022816 and 22078358)
文摘Cooling water systems(CWSs)are extensively utilized in various industries to eliminate the excess heat and converse energy.Studies on CWSs mainly concentrated on finding the optimal cooler network structure.In addition,some works also considered the optimal design under varied operation conditions.However,in these works,once the optimal design of the cooler's network is determined,its arrangement remains fixed and cannot be adapted to accommodate diverse operating conditions.In this work,a flexible topology network concept is proposed to make the adjustment of network structure possible under different operation conditions.The CWS with integrated air cooler and flexible topology network has better overall performance,represented by a mixed integer nonlinear programming(MINLP)model that require advanced tools such as GAMS software.Case studies revealed that the proposed methodology can realize better energy-saving performance,and improve the economic performance under varied operation conditions.The impact of critical flexible nodes on system configuration and economy is achieved by sensitivity analysis.
文摘In a district heating and cooling system, i.e. Beijing combined heating cooling and power (CHCP) system studied here, the high temperature water generated by two cogeneration plants circulates through a network between the plants and heat substations. At heat substations, the supply water of high temperature from the network drives absorption chillers for air-conditioning in summer and meets space heating demands in winter or domestic hot water demands by heat exchangers in the whole year. The parameters, i.e. supply/return water temperatures in the network, have a great impact on primary energy consumption (PEC) of the absorption chillers, circulation pumps and domestic hot water (DHW), which is studied in this paper.
文摘This paper describes a new multi-layer complex liquid-cooled Si mirror with 3 cooling ducts in Archimedes spirals. Utilizing the ANSYS program, the structure of the mirror is optimized and the thermal deformation model of the mirror is simulated. The simulation results show that the mirror has the following advantages: very small amount of surface deformation, uniform distribution of temperature and surface deformation, and fast surface shape restoration. The results of the experiments of thermal deformation and the surface restoration are accurately mapped to the simulation results.
文摘An electro-optic Q-switched Nd:YAG ceramic laser operating at kHz repetition rate was demonstrated. Thermal induced lens' focus of ceramic rod was measured and compensated by piano-convex cavity structure. Depolarization loss at different output powers was measured in Nd:YAG single crystal and ceramic lasers. High-energy high-beam-quality laser pulse output was obtained in both laser structures. Pulse energy of about 20 mJ and pulse width of less than 12 ns were achieved, and the average power reached 20 W. The divergence of output laser beam was less than 1.2 mrad, and the beam propagation factor M^2 was about 1.4.
文摘Two semiconductor saturable absorber mirrors (SESAMs), of which one is coated with 50% reflection film on the top and the other is not, were contrastively studied in passively mode-locked solid-state lasers which were pumped by low output power laser diode (LD). Experiments have shown that reducing the modulation depth of SESAM by coating partial reflection film, whose reflectivity is higher than that between SESAM and air interface, is an effective method to get continuous wave (CW) mode-locking instead of Q-switched mode-locking (QML) in low power pumped solid-state lasers. A simple Nd:YVO4 laser pumped by low power LD, in which no water-cooling system was used, could obtain CW mode-locking by the 50% reflector coated SESAM with average output power of ~ 20 mW.