期刊文献+
共找到4,363篇文章
< 1 2 219 >
每页显示 20 50 100
A novel water layer structure inside nanobubbles at room temperature 被引量:3
1
作者 张立娟 王建 +2 位作者 罗毅 方海平 胡钧 《Nuclear Science and Techniques》 SCIE CAS CSCD 2014年第6期81-83,共3页
Molecularly thin water layer, with a hydrogen bonding network different from those in bulk water and ice, has unique properties and is generally involved in many important processes such as wetting, erosion, atmospher... Molecularly thin water layer, with a hydrogen bonding network different from those in bulk water and ice, has unique properties and is generally involved in many important processes such as wetting, erosion, atmosphere chemical reaction, protein folding and biomolecular interaction. Here, we report a new water layer structure at room temperature, which is found inside nanobubbles by using synchrotron based scanning transmission soft X-ray microscopy(STXM). The three peaks 535.0, 536.8 and 540.9 e V at O K edge inside the nanobubbles show a novel characteristics of very thin water layers, which has never been observed before. 展开更多
关键词 纳米气泡 层结构 水层 室温 软X射线显微镜 大气化学反应 生物分子 蛋白质折叠
下载PDF
Lamellar water induced quantized interlayer spacing of nanochannels walls
2
作者 Yue Zhang Chenlu Wang +3 位作者 Chunlei Wang Yingyan Zhang Junhua Zhao Ning Wei 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期356-365,共10页
The nanoscale confinement is of great important for the industrial applications of molecular sieve,desalination,and also essential in bio-logical transport systems.Massive efforts have been devoted to the influence of... The nanoscale confinement is of great important for the industrial applications of molecular sieve,desalination,and also essential in bio-logical transport systems.Massive efforts have been devoted to the influence of restricted spaces on the properties of confined fluids.However,the situation of channel-wall is crucial but attracts less attention and remains unknown.To fundamentally understand the mechanism of channel-walls in nanoconfinement,we investigated the interaction between the counter-force of the liquid and interlamellar spacing of nanochannel walls by considering the effect of both spatial confinement and surface wettability.The results reveal that the nanochannel stables at only a few discrete spacing states when its confinement is within 1.4 nm.The quantized interlayer spacing is attributed to water molecules becoming laminated structures,and the stable states are corresponding to the monolayer,bilayer and trilayer water configurations,respectively.The results can potentially help to understand the characterized interlayers spacing of graphene oxide membrane in water.Our findings are hold great promise in design of ion filtration membrane and artificial water/ion channels. 展开更多
关键词 NANOCONFINEMENT Quantized spacing Lamellar water layer MD simulations Entropy force
下载PDF
NirS-type denitrifying bacteria in aerobic water layers of two drinking water reservoirs: Insights into the abundance, community diversity and co-existence model 被引量:1
3
作者 Haihan Zhang Yinjie Shi +6 位作者 Tinglin Huang Rongrong Zong Zhenfang Zhao BenMa Nan Li Shangye Yang Mengqiao Liu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第2期215-226,共12页
The nirS-type denitrifying bacterial community is the main drivers of the nitrogen loss process in drinking water reservoir ecosystems.The temporal patterns in nirS gene abundance and nirS-type denitrifying bacterial ... The nirS-type denitrifying bacterial community is the main drivers of the nitrogen loss process in drinking water reservoir ecosystems.The temporal patterns in nirS gene abundance and nirS-type denitrifying bacterial community harbored in aerobic water layers of drinking water reservoirs have not been studied well.In this study,quantitative polymerase chain reaction(qPCR)and Illumina Miseq sequencing were employed to explore the nirS gene abundance and denitrifying bacterial community structure in two drinking water reservoirs.The overall results showed that the water quality parameters in two reservoirs had obvious differences.The qPCR results suggested that nirS gene abundance ranged from(2.61±0.12)×10^(5) to(3.68±0.16)×10^(5) copies/mL and(3.01±0.12)×10^(5) to(5.36±0.31)×10^(5) copies/mL in Jinpen and Lijiahe reservoirs,respectively.The sequencing results revealed that Paracoccus sp.,Azoarcus sp.,Dechloromonas sp.and Thauera sp.were the dominant genera observed.At species level,Cupriavidus necator,Dechloromonas sp.R-28400,Paracoccus denitrificans and Pseudomonas stutzeri accounted for more proportions in two reservoirs.More importantly,the co-occurrence network analysis demonstrated that Paracoccus sp.R-24615 and Staphylococcus sp.N23 were the keystone species observed in Jinpen and Lijiahe reservoirs,respectively.Redundancy analysis indicated that water quality(particularly turbidity,water temperature,pH and Chlorophyll a)and sampling time had significant influence on the nirS-type denitrifying bacterial community in both reservoirs.These results will shed new lights on exploring the dynamics of nirS-type denitrifying bacteria in aerobic water layers of drinking water reservoirs. 展开更多
关键词 Drinking water reservoirs Aerobic water layers Denitrifying bacterial community NirS gene Co-occurrence network model
原文传递
Properties of a water layer on hydrophilic and hydrophobic self-assembled monolayer surfaces: A molecular dynamics study 被引量:2
4
作者 LI EnZe DU ZhiPing YUAN ShiLing 《Science China Chemistry》 SCIE EI CAS 2013年第6期773-781,共9页
The microscopic behaviors of a water layer on different monolayers (SAMs) are studied by molecular dynamics hydrophilic and hydrophobic surfaces of well ordered self-assembled simulations. The SAMs consist of 18-car... The microscopic behaviors of a water layer on different monolayers (SAMs) are studied by molecular dynamics hydrophilic and hydrophobic surfaces of well ordered self-assembled simulations. The SAMs consist of 18-carbon alkyl chains bound to a silicon(111) substrate, and the characteristic of its surface is tuned from hydrophobic to hydrophilic by using different terminal functional groups (-CH3, -COOH). In the simulation, the properties of water membranes adjacent to the surfaces of SAMs were reported by comparing pure water in mobility, structure, and orientational ordering of water molecules. The results sug- gest that the mobility of water molecules adjacent to hydrophilic surface becomes weaker and the molecules have a better or- dering. The distribution of hydrogen bonds indicates that the number of water-water hydrogen bonds per water molecule tends to be lower. However, the mobility of water molecules and distribution of hydrogen bonds of a water membrane in hydropho- bic system are nearly the same as those in pure water system. In addition, hydrogen bonds are mainly formed between the hy- droxyl of the COOH group and water molecules in a hydrophilic system, which is helpful in understanding the structure of in- terfacial water. 展开更多
关键词 self-assembled monolayers water layer HYDROPHILIC HYDROPHOBIC molecular dynamics SIMULATION
原文传递
Experimental Study of Turbulent Wake Behind a Sine Shaped Island in a Shallow-Water Layer 被引量:1
5
作者 李玲 李玉梁 陈嘉范 《Tsinghua Science and Technology》 SCIE EI CAS 2002年第3期251-253,共3页
A series of experiments is conducted to study shallow-water flow in the wake of a sine shaped island. Digital particle imaging velocimetry (DPIV) is used to measure velocities in the turbulent wake behind a sine shap... A series of experiments is conducted to study shallow-water flow in the wake of a sine shaped island. Digital particle imaging velocimetry (DPIV) is used to measure velocities in the turbulent wake behind a sine shaped island for different characteristic coefficients S. Flow streamlines are given for the wake flows. The measured results show that the characteristic coefficient S is uniquely related to the flow pattern around a sine shaped island in a shallow water layer. An S value of approximately 0.20 is the critical value for transition from a vortex street to unsteady flow and a value of approximately 0.40 is the critical value for transition from unsteady flow to steady flow. 展开更多
关键词 shallow water layer flow around sine shaped island turbulent wake digital particle imaging velocimetry (DPIV)
原文传递
Spatial distribution of water-active soil layer along the south-north transect in the Loess Plateau of China 被引量:6
6
作者 ZHAO Chunlei SHAO Ming'an +2 位作者 JIA Xiaoxu HUANG Laiming ZHU Yuanjun 《Journal of Arid Land》 SCIE CSCD 2019年第2期228-240,共13页
Soil water is an important composition of water recycle in the soil-plant-atmosphere continuum.However, intense water exchange between soil-plant and soil-atmosphere interfaces only occurs in a certain layer of the so... Soil water is an important composition of water recycle in the soil-plant-atmosphere continuum.However, intense water exchange between soil-plant and soil-atmosphere interfaces only occurs in a certain layer of the soil profile. For deep insight into water active layer(WAL, defined as the soil layer with a coefficient of variation in soil water content >10% in a given time domain) in the Loess Plateau of China,we measured soil water content(SWC) in the 0.0–5.0 m soil profile from 86 sampling sites along an approximately 860-km long south-north transect during the period 2013–2016. Moreover, a dataset contained four climatic factors(mean annual precipitation, mean annual evaporation, annual mean temperature and mean annual dryness index) and five local factors(altitude, slope gradient, land use, clay content and soil organic carbon) of each sampling site was obtained. In this study, three WAL indices(WALT(the thickness of WAL), WAL-CV(the mean coefficient of variation in SWC within WAL) and WALSWC(the mean SWC within WAL)) were used to evaluate the characteristics of WAL. The results showed that with increasing latitude, WAL-T and WAL-CV increased firstly and then decreased. WAL-SWC showed an opposite distribution pattern along the south-north transect compared with WAL-T and WAL-CV.Average WAL-T of the transect was 2.0 m, suggesting intense soil water exchange in the 0.0–2.0 m soil layer in the study area. Soil water exchange was deeper and more intense in the middle region than in the southern and northern regions, with the values of WAL-CV and WAL-T being 27.3% and 4.3 m in the middle region,respectively. Both climatic(10.1%) and local(4.9%) factors influenced the indices of WAL, with climatic factors having a more dominant effect. Compared with multiple linear regressions, pedotransfer functions(PTFs) from arti?cial neural network can better estimate the WAL indices. PTFs developed by artificial neural network respectively explained 86%, 81% and 64% of the total variations in WAL-T, WAL-SWC and WAL-CV. Knowledge of WAL is crucial for understanding the regional water budget and evaluating the stable soil water reserve, regional water characteristics and eco-hydrological processes in the Loess Plateau of China. 展开更多
关键词 water ACTIVE layer soil water content redundancy analysis pedotransfer function artificial neural network LOESS PLATEAU
下载PDF
Quantitative evaluation methods for waterflooded layers of conglomerate reservoir based on well logging data 被引量:22
7
作者 Tan Fengqi Li Hongqi +2 位作者 Xu Changfu Li Qingyuan Peng Shouchang 《Petroleum Science》 SCIE CAS CSCD 2010年第4期485-493,共9页
The rapid changing near source, multi-stream depositional environment of conglomerate reservoirs leads to severe heterogeneity, complex lithology and physical properties, and large changes of oil layer resistivity. Qu... The rapid changing near source, multi-stream depositional environment of conglomerate reservoirs leads to severe heterogeneity, complex lithology and physical properties, and large changes of oil layer resistivity. Quantitative evaluation of water-flooded layers has become an important but difficult focus for secondary development of oilfields. In this paper, based on the analysis of current problems in quantitative evaluation of water-flooded layers, the Kexia Group conglomerate reservoir of the Sixth District in the Karamay Oilfield was studied. Eight types of conglomerate reservoir lithology were identified effectively by a data mining method combined with the data from sealed coring wells, and then a multi-parameter model for quantitative evaluation of the water-flooded layers of the main oil-bearing lithology was developed. Water production rate, oil saturation and oil productivity index were selected as the characteristic parameters for quantitative evaluation of water-flooded layers of conglomerate reservoirs. Finally, quantitative evaluation criteria and identification rules for water-flooded layers of main oil-bearing lithology formed by integration of the three characteristic parameters of water-flooded layer and undisturbed formation resistivity. This method has been used in evaluation of the water-flooded layers of a conglomerate reservoir in the Karamay Oilfield and achieved good results, improving the interpretation accuracy and compliance rate. It will provide technical support for avoiding perforation of high water-bearing layers and for adjustment of developmental programs. 展开更多
关键词 water-flooded layer quantitative evaluation conglomerate reservoir lithology identification decision tree characteristic parameters
下载PDF
Layer regrouping for water-flooded commingled reservoirs at a high water-cut stage 被引量:2
8
作者 Chuan-Zhi Cui Jian-Peng Xu +3 位作者 Duan-Ping Wang Zhi-Hong Liu Ying-song Huang Zheng-Ling Geng 《Petroleum Science》 SCIE CAS CSCD 2016年第2期272-279,共8页
Layer regrouping is to divide all the layers into several sets of production series according to the physical properties and recovery percent of layers at high water-cut stage, which is an important technique to impro... Layer regrouping is to divide all the layers into several sets of production series according to the physical properties and recovery percent of layers at high water-cut stage, which is an important technique to improve oil recovery for high water-cut multilayered reservoirs. Dif- ferent regroup scenarios may lead to different production performances. Based on unstable oil-water flow theory, a multilayer commingled reservoir simulator is established by modifying the production split method. Taking into account the differences of layer properties, including per- meability, oil viscosity, and remaining oil saturation, the pseudo flow resistance contrast is proposed to serve as a characteristic index of layer regrouping for high water-cut multilayered reservoirs. The production indices of multi- layered reservoirs with different pseudo flow resistances are predicted with the established model in which the data are taken from the Shengtuo Oilfield. Simulation results show that the pseudo flow resistance contrast should be less than 4 when the layer regrouping is implemented. The K-means clustering method, which is based on the objec- tive function, is used to automatically carry out the layer regrouping process according to pseudo flow resistances. The research result is applied to the IV-VI sand groups of the second member of the Shahejie Formation in the Shengtuo Oilfield, a favorable development performance is obtained, and the oil recovery is enhanced by 6.08 %. 展开更多
关键词 water-flooded reservoirs layer regrouping.Flow resistance - High water cut Reservoir simulation
下载PDF
Long Term Effects of Farming System on Soil Water Content and Dry Soil Layer in Deep Loess Profile of Loess Tableland in China 被引量:11
9
作者 CHENG Li-ping LIU Wen-zhao 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第6期1382-1392,共11页
Soil water is strongly affected by land use/cover in the Loess Plateau in China. Water stored in thick loessal soils is one of the most important resources regulating vegetation growth. However, soil water in the deep... Soil water is strongly affected by land use/cover in the Loess Plateau in China. Water stored in thick loessal soils is one of the most important resources regulating vegetation growth. However, soil water in the deep loess proifle, which is critical for maintaining the function of the“soil water pool”is rarely studied because deep proifle soil samples are dififcult to collect. In this study, four experimental plots were established in 2005 to represent different farming systems on the Changwu Tableland:fallow land, fertilized cropland, unfertilized cropland, and continuous alfalfa. The soil water content in the 15-m-deep loess proifles was monitored continuously from 2007 to 2012 with the neutron probe technique. The results showed that temporal variations in soil water proifles differed among the four farming systems. Under fallow land, the soil water content increased gradually over time, ifrst in the surface layers and later in the deep soil layers. In contrast, the soil water content decreased gradually under continuous alfalfa. The distributions of soil water in deep soil layers under both fertilized and unfertilized cropland were relatively stable over time. Thus farming system signiifcantly affected soil water content. Seven years after the start of the experiment, the soil water contents in the 15-m-deep proifles averaged 23.4%under fallow land, 20.3%under fertilized cropland, 21.6%under unfertilized cropland, and 16.0%under continuous alfalfa. Compared to measurements at the start of the experiment, both fallow land and unfertilized cropland increased soil water storage in the 15-m loess proifles. In contrast, continuous alfalfa reduced soil water storage. Fertilized cropland has no signiifcant effect on soil water storage. These results suggest that deep soil water can be replenished under the fallow and unfertilized farming systems. Dry soil layers (i.e., those which have soil water content less than the stable ifeld water capacity) in the subsoil of the Changwu Tableland region can be classiifed as either temporary dry soil layers or persistent dry soil layers. Temporary dry soil layers, which typically form under annual crops, often disappear during wet years. Persistent dry soil layers generally develop under perennial vegetation. Even after removing the vegetation, persistent dry soil layers remain for several decades. This study provides information useful for the conservation and utilization of soil water resources in the Loess Tableland. 展开更多
关键词 farming system temporal variability soil water dried soil layer Loess Plateau
下载PDF
Effects of Phosphorus Application in Different Soil Layers on Root Growth, Yield, and Water-Use Efficiency of Winter Wheat Grown Under Semi-Arid Conditions 被引量:5
10
作者 KANG Li-yun YUE Shan-chao LI Shi-qing 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第9期2028-2039,共12页
Deep phosphorus application can be a usefull measure to improve crops' performance in semi-arid regions, but more knowledge of both its general effects and effects on specific crops is required to optimize treatments... Deep phosphorus application can be a usefull measure to improve crops' performance in semi-arid regions, but more knowledge of both its general effects and effects on specific crops is required to optimize treatments. Thus, the aims of this study were to evaluate the effects of phosphorus(P) application at different soil layers on root growth, grain yield, and water-use efficiency(WUE) of winter wheat grown on the semi-arid Loess Plateau of China and to explore the relationship between root distribution and grain yield. The experiment consisted of four P treatments in a randomized complete block design with three replicates and two cultivars: one drought-sensitive(Xiaoyan 22, XY22) and one drought-tolerant(Changhan 58, CH58). The four P treatments were no P(control, CK), surface P(SP), deep P(DP), and deep-band P application(DBP). CH58 produced larger and deeper root systems, and had higher grain yields and WUE, under the deep P treatments(DP and DBP) than under SP, clearly showing that deep P placement had beneficial effects on the drought-tolerant cultivar. In contrast, the grain yield and root growth of XY22 did not differ between DP or DBP and SP treatments. Further, root dry weight(RW) and root length(RL) in deep soil layer(30-100 cm) were closely positively correlated with grain yield and WUE of CH58(but not XY22), highlighting the connections between a well-developed subsoil root system and both high grain yield and WUE for the drought-tolerant cultivar. WUE correlated strongly with grain yield for both cultivars(r=0.94, P〈0.001). In conclusion, deep application of P fertilizer is a practical and feasible means of increasing grain yield and WUE of rainfed winter wheat in semi-arid regions, by promoting deep root development of drought-tolerant cultivars. 展开更多
关键词 water stress phosphorus application soil layers grain yield root growth water-use efficiency
下载PDF
Water masses classification of the upper layer in the Equatorial Western Pacific using ISODATA of fuzzy cluster 被引量:1
11
《Acta Oceanologica Sinica》 SCIE CAS CSCD 1990年第2期187-201,共15页
-In this paper,by using ISODATA of fuzzy cluster,the water masses classification of the upper layer in the E-quatorial Western Pacific is carried out. On the basis of the degree of the membership in the obtained optim... -In this paper,by using ISODATA of fuzzy cluster,the water masses classification of the upper layer in the E-quatorial Western Pacific is carried out. On the basis of the degree of the membership in the obtained optima) classification matrix, the solid distribution of the detailed structure of water masses is made. The water of the upper layer,consisting of six water masses,may be divided into three layers,i, e. ,the surface,subsurface and intermediate layer. Besides analyzing the features of various water masses,a discussion on their distribution structure and formation mechanism is also made. 展开更多
关键词 water masses classification of the upper layer in the Equatorial Western Pacific using ISODATA of fuzzy cluster ISODATA
下载PDF
New evidence for the links between the local water cycle and the underground wet sand layer of a mega-dune in the Badain Jaran Desert, China 被引量:7
12
作者 Jun WEN ZhongBo SU +5 位作者 TangTang ZHANG Hui TIAN YiJian ZENG Rong LIU Yue KANG Rogier van der VELDE 《Journal of Arid Land》 SCIE CSCD 2014年第4期371-377,共7页
Scientists and the local government have great concerns about the climate change and water resources in the Badain Jaran Desert of western China. A field study for the local water cycle of a lake-desert system was con... Scientists and the local government have great concerns about the climate change and water resources in the Badain Jaran Desert of western China. A field study for the local water cycle of a lake-desert system was conducted near the Noertu Lake in the Badain Jaran Desert from 21 June to 26 August 2008. An underground wet sand layer was observed at a depth of 20–50 cm through analysis of datasets collected during the field experiment. Measurements unveiled that the near surface air humidity increased in the nighttime. The sensible and latent heat fluxes were equivalent at a site about 50 m away from the Noertu Lake during the daytime, with mean values of 134.4 and 105.9 W/m2 respectively. The sensible heat flux was dominant at a site about 500 m away from the Noertu Lake, with a mean of 187.7 W/m2, and a mean latent heat flux of only 26.7 W/m2. There were no apparent differences for the land surface energy budget at the two sites during the night time. The latent heat flux was always negative with a mean value of –12.7 W/m2, and the sensible heat flux was either positive or negative with a mean value of 5.10 W/m2. A portion of the local precipitation was evaporated into the air and the top-layer of sand dried quickly after every rainfall event, while another portion seeped deep and was trapped by the underground wet sand layer, and supplied water for surface psammophyte growth. With an increase of air humidity and the occurrence of negative latent heat flux or water vapor condensation around the Noertu Lake during the nighttime, we postulated that the vapor was transported and condensed at the lakeward sand surface, and provided supplemental underground sand pore water. There were links between the local water cycle, underground wet sand layer, psammophyte growth and landscape evolution of the mega-dunes surrounding the lakes in the Badain Jaran Desert of western China. 展开更多
关键词 mega-dune water cycle observation wet sand layer Badain Jaran Desert
下载PDF
Layering of confined water between two graphene sheets and its liquid-liquid transition
13
作者 周戌燕 段云瑞 +4 位作者 王龙 刘思达 李涛 李一凡 李辉 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第10期360-364,共5页
Molecular dynamics (MD) simulations are performed to explore the layering structure and liquid-liquid transition of liquid water confined between two graphene sheets with a varied distance at different pressures. Bo... Molecular dynamics (MD) simulations are performed to explore the layering structure and liquid-liquid transition of liquid water confined between two graphene sheets with a varied distance at different pressures. Both the size of nanoslit and pressure could cause the layering and liquid-liquid transition of the confined water. With increase of pressure and the nanoslit's size, the confined water could have a more obvious layering. In addition, the neighboring water molecules firstly form chain structure, then will transform into square structure, and finally become triangle with increase of pressure. These results throw light on layering and liquid-liquid transition of water confined between two graphene sheets. 展开更多
关键词 confined water layerING liquid-liquid transition
原文传递
Recent progress in functionalized layered double hydroxides and their application in efficient electrocatalytic water oxidation 被引量:4
14
作者 Xiaolong Deng Jinzhao Huang +5 位作者 Hao Wan Fashen Chen Yifan Lin Xijin Xu Renzhi Ma Takayoshi Sasaki 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第5期93-104,共12页
Layered double hydroxides (LDHs), a class of anionic clays consisting of brucite-like host layers and interlayer anions, have been widely investigated in the last decade due to their promising applications in many are... Layered double hydroxides (LDHs), a class of anionic clays consisting of brucite-like host layers and interlayer anions, have been widely investigated in the last decade due to their promising applications in many areas such as catalysis, ion separation and adsorption. Owing to the highly tunable compositi on and uniform distribution of metal cations in the brucite-like layers, as well as the facile exchangeability of intercalated anions, LDHs can be modified and functionalized to form various nanostructures/composites through versatile processes such as anion intercalation and exfoliation, decoration of nanoparticles, selfassembly with other two-dimensional (2D) materials, and controlled growth on conductive supports (e.g., nanowire arrays, nano tubes, 3D foams). In this article, we briefly review the recent advances on both the LDH nano structures and functionalized composites toward the applications in energy conversion, especially for water oxidation. 展开更多
关键词 layerED double HYDROXIDE Energy conversion water SPLITTING FUNCTIONALIZATION
下载PDF
THE CAUCHY PROBLEM FOR THE TWO LAYER VISCOUS SHALLOW WATER EQUATIONS
15
作者 Pengcheng MU Qiangchang JU 《Acta Mathematica Scientia》 SCIE CSCD 2020年第6期1783-1807,共25页
In this paper,the Cauchy problem for the two layer viscous shallow water equations is investigated with third-order surface-tension terms and a low regularity assumption on the initial data.The global existence and un... In this paper,the Cauchy problem for the two layer viscous shallow water equations is investigated with third-order surface-tension terms and a low regularity assumption on the initial data.The global existence and uniqueness of the strong solution in a hybrid Besov space are proved by using the Littlewood-Paley decomposition and Friedrichs'regularization method. 展开更多
关键词 two layer shallow water equations global strong solution hybrid Besov spaces
下载PDF
Groundwater monitoring of an open-pit limestone quarry:Water-rock interaction and mixing estimation within the rock layers by geochemical and statistical analyses 被引量:9
16
作者 Khy Eam Eang Toshifumi Igarashi +3 位作者 Megumi Kondo Tsurugi Nakatani Carlito Baltazar Tabelin Ryota Fujinaga 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2018年第6期849-857,共9页
Water-rock interaction and groundwater mixing are important phenomena in understanding hydrogeological systems and the stability of rock slopes especially those consisting largely of moderately watersoluble minerals l... Water-rock interaction and groundwater mixing are important phenomena in understanding hydrogeological systems and the stability of rock slopes especially those consisting largely of moderately watersoluble minerals like calcite. In this study, the hydrogeological and geochemical evolutions of groundwater in a limestone quarry composed of three strata: limestone layer(covering), interbedded layer under the covering layer, and slaty greenstone layer(basement) were investigated. Water-rock interaction in the open-pit limestone quarry was evaluated using PHREEQC, while hierarchical cluster analysis(HCA)and principal component analysis(PCA) were used to classify and identify water sources responsible for possible groundwater mixing within rock layers. In addition, Geochemist's Workbench was applied to estimate the mixing fractions to clarify sensitive zones that may affect rock slope stability. The results showed that the changes in Ca2+and HCO3àconcentrations of several groundwater samples along the interbedded layer could be attributed to mixing groundwater from the limestone layer and that from slaty greenstone layer. Based on the HCA and PCA results, groundwaters were classified into several types depending on their origin:(1) groundwater from the limestone layer(LO),(2) mixed groundwater flowing along the interbedded layer(e.g., groundwater samples L-7, L-11, S-3 and S-4), and(3) groundwater originating from the slaty greenstone layer(SO). The mixing fractions of 41% LO: 59% SO, 64% LO: 36% SO, 43%LO: 57% SOand 25% LO: 75% SOon the normal days corresponded to groundwaters L-7, L-11, S-3 and S-4,respectively, while the mixing fractions of groundwaters L-7 and L-11(61% LO: 39% SOand 93% LO: 7% SO,respectively) on rainy days became the majority of groundwater originating from the limestone layer.These indicate that groundwater along the interbedded layer significantly affected the stability of rock slopes by enlarging multi-breaking zones in the layer through calcite dissolution and inducing high water pressure, tension cracks and potential sliding plane along this layer particularly during intense rainfall episodes. 展开更多
关键词 water-rock interaction GROUNDwater MIXING Interbedded layer Geochemist’s WORKBENCH ROCK SLOPE stability
下载PDF
Electrocatalytic water splitting at nitrogen-doped carbon layers-encapsulated nickel cobalt selenide
17
作者 Chuanlai Jiao Xiangjie Bo Ming Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第7期161-170,共10页
Generally,the catalytic overpotentials of hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)are unavoidable because of the low charge transfer.In this work,two strategies of alloying of Co with Ni and ... Generally,the catalytic overpotentials of hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)are unavoidable because of the low charge transfer.In this work,two strategies of alloying of Co with Ni and enclosing of electrocatalysts with carbonaceous materials were both used to accelerate the catalytic efficiency of cobalt selenide for water splitting.The nitrogen-doped carbon(NC)layer improves the reaction kinetics by efficient charge transfer.The alloying of metal into composited electrocatalysts can modify the electronic properties of host materials,thereby tuning the adsorption behavior of intermediate and improving the electrocatalytic activity.As expected,Nyquist plots reveal that the charge-transfer resistance(Rct)of nickel cobalt selenide encapsulated into nitrogen-doped carbon layer(CoNiSe/NC-3,Co:Ni=1:1)are just 5 and 9 for HER and OER,respectively,which are much lower than those of CoSe/NC-1(Co:Ni=1:0)(81 and 138)and CoNiSe/NC-3 without NC(CoNiSe-3)(54 and 25).With the high charge transfer and porous structure,CoNiSe/NC-3 shows good performance for both HER and OER.When current density reaches 10 m A cm-2,only 100 and 270 mV overpotentials are required for HER and OER,respectively.With the potential of 1.65 V,full water splitting also can be catalyzed by Co Ni Se/NC-3 with current density of 20 m A cm-2,suggesting that CoNiSe/NC-3 could be used as replacement for noble metal electrocatalysts. 展开更多
关键词 NICKEL COBALT SELENIDE NITROGEN-DOPED carbon layer water splitting Hydrogen EVOLUTION REACTION Oxygen EVOLUTION REACTION
下载PDF
Effect of slope gradient on the subsurface water flow velocity of sand layer profile 被引量:2
18
作者 HAN Zhen CHEN Xiao-yan +3 位作者 HUANG Yu-han LUO Bang-lin XING Hang HUANG Yong-chao 《Journal of Mountain Science》 SCIE CSCD 2020年第3期641-652,共12页
Subsurface water flow velocity influences the hydrodynamic characteristics of soil seepage and the interaction between subsurface water flow and surface runoff during soil erosion and sediment transport.A visualized m... Subsurface water flow velocity influences the hydrodynamic characteristics of soil seepage and the interaction between subsurface water flow and surface runoff during soil erosion and sediment transport.A visualized method and equipment was adopted in this study to observe the subsurface water flow.Quartz sand was used as the test material of subsurface water flow and fluorescent dye was used as the indicator for tracing subsurface water flow.Water was supplied at the same flow discharge to the three parts at the bottom of the test flume,and the subsurface water flow were determined with four slope gradients(4°,8°,10°,and 12°).The results showed that the seepage velocity gradually increased with increasing slope gradient.The pore water velocity at different depths of sand layer profile increased with increasing slope gradient,whereas the thickness of the flow front gradually decreased.For the same slope gradient,the pore water velocity in the lower layer was the largest,whereas the thickness of the flow front was the smallest.Comparative analysis of the relationship between seepage velocity and pore water velocity at different depths of sand layer profile showed that the maximum relative difference between the measured pore water velocity and the computational pore water velocity at different depths of sand profile in the experiment was 4.38%.Thus,the test method for measuring the subsurface water flow velocity of sand layer profile adopted in this study was effective and feasible.The development of this experiment and the exploration of research methods would lay a good test foundation for future studies on the variation law of subsurface water flow velocity and the determination of flow velocity in purple soils,thus contributing to the improvement of the hydrodynamic mechanism of purple soils. 展开更多
关键词 SUBSURFACE water flow PORE water VELOCITY SEEPAGE VELOCITY SLOPE gradient Sand layer
原文传递
A Similarity Technique for Solving Two-Layer Shallow-Water Equations
19
作者 Magda M. Kassem Medhat M. Helal +1 位作者 Mohammad L. Mekky Emad A. Mohamed 《Applied Mathematics》 2012年第4期315-321,共7页
This paper is devoted to the analysis of the two-layer shallow-water equations representing gravity currents. A similarity technique which is the characteristic function method is applied for this study. The applicati... This paper is devoted to the analysis of the two-layer shallow-water equations representing gravity currents. A similarity technique which is the characteristic function method is applied for this study. The application of the characteristic function method makes it possible to obtain the similarity forms depending on a group of infinitesimal transformations. Thus, the number of independent variables is reduced by one and the governing partial differential equations with the auxiliary conditions reduce to a system of ordinary differential equations with the appropriate auxiliary conditions. Numeric solutions are presented and discussed. 展开更多
关键词 The CHARACTERISTIC Function Method The Two-layer SHALLOW-water EQUATIONS GRAVITY CURRENTS
下载PDF
Resistance of the diffusive boundary layer to salt release from saline sediments to freshwater
20
作者 GAO Zengwen ZHENG Xilai XU Qinxuan 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2008年第1期23-28,共6页
The diffusive boundary layer (DBL) is the zone for matter exchange between surface water and aquatic sediments. To elucidate the influence of DBL on salt release from saline sediments to freshwater, two experiments ... The diffusive boundary layer (DBL) is the zone for matter exchange between surface water and aquatic sediments. To elucidate the influence of DBL on salt release from saline sediments to freshwater, two experiments with or without wind blowing were conducted. According to the experiments, a 3.5 cm DBL is formed above the smoothed sediments at a steady wind field and this thickness is greater than other studies. The observed flux of salt through the DBL is 6% larger than the calculated value from Fick' s first law. The results indicate that molecular diffusion is the dominant mechanism for salt transport through the DBL. The presence of DBL suppresses the hydrodynamic enhancement for matter exchange between sediments and overlying water. Therefore, salts in the sediments of a polder reservoir may influence the water quality chronically. 展开更多
关键词 sediment-water interface diffusive boundary layer molecular diffusion salt transport resistance effect
下载PDF
上一页 1 2 219 下一页 到第
使用帮助 返回顶部