期刊文献+
共找到18,001篇文章
< 1 2 250 >
每页显示 20 50 100
The influence of water level changes on sand bodies at river-dominated delta fronts:The Gubei Sag,Bohai Bay Basin
1
作者 Yang Zhang Zheng Shi +3 位作者 Ji Li Jun-Wei Wang Bao-Liang Yang Ji-Guo Jiang 《Petroleum Science》 SCIE CAS CSCD 2022年第1期58-73,共16页
Changes in water level are one of the important factors controlling the constructive characteristics of deltas.The paper studies the influence of water level changes on sand bodies in the third member of the Shahejie ... Changes in water level are one of the important factors controlling the constructive characteristics of deltas.The paper studies the influence of water level changes on sand bodies in the third member of the Shahejie Formation(Es3)on the gentle southern slope of the Gubei Sag,Bohai Bay Basin and draw some conclusions that,for complex sand bodies,with the increase in water level the distributary channels bifurcate frequently,from a simple branching shape to a network shape along with the increase in the development of crevasse splays,mouth bars and sheet sands.For single sand bodies,with an increase in water level in the slope zone of the lake basin close to the source area,the superimposition style transitioned from vertical cutting-stacking and lateral isolation to vertical stitching,isolation and lateral stitching.However,in the central zone of the lake basin far from the source area,the superimposition style transitioned from vertical stitching and lateral stitching to vertical isolation and lateral isolation.When water level stays stable,the greater the distance from the source area the greater the disaggregation ratio of a single sand body.At the same distance from the source area,higher water level tends to result in greater disaggregation ratio of a single sand body. 展开更多
关键词 water level changes River-dominated delta Delta front sandbodies Paleogene Shahejie Formation Gubei Sag of Bohai Bay Basin
下载PDF
The World’s Largest Lakes Water Level Changes in the Context of Global Warming
2
作者 Valery S. Vuglinsky Maria R. Kuznetsova 《Natural Resources》 2019年第2期29-46,共18页
The article is focused on the assessment of changes in the average annual water levels of large lakes of the planet in the changing climate conditions characteristic of the recent decades. Eight large lakes, i.e.Baika... The article is focused on the assessment of changes in the average annual water levels of large lakes of the planet in the changing climate conditions characteristic of the recent decades. Eight large lakes, i.e.Baikal, Balkhash, Superior, Issyk-Kul, Ladoga, Onega, Ontario, and Erie, located on the territory of Eurasia and North America, were chosen as the research objects. They were selected because of the availability of a long-term observations series of the water level. As is known, long-term changes in the lakes water level result from variation in the water volume. The latter depends on the?ratios between the water balance components of the lake that have developed during a given year, which, in turn, reflect the climatic conditions of the respective years. The features of the water balance structure of the above-mentioned?lakes and the intra-annual course of the water level are considered. The available long-term records of observational data on all selected lakes and their stations were divided into two periods: from 1960 to 1979 (the period of stationary climatic situation) and from 1980 to 2008 (the period of non-stationary climatic situation). The homogeneity and significance of trends in the long-term water level series of records have been estimated. It has been established that over the second period the nature and magnitude of the lakes water levels variations differ significantly. For lakes Balkhash, Issyk-Kul, Ladoga, Superior, and Erie, there is a general tendency for a decrease in water levels. For the remaining three lakes (Baikal, Onega, and Ontario), the opposite tendency has been noted: the levels of these lakes increased. Quantitatively, the range of changes in water levels on the lakes in question over the period of 1980-2008 ranged from -4 cm to +26 cm. 展开更多
关键词 Large LAKES water level changes Global WARMING
下载PDF
Characteristics of coseismic water level changes at Tangshan well for the Wenchuan MS_8.0 earthquake and its larger aftershocks
3
作者 Baojun Yin Li Ma +3 位作者 Huizhong Chen Jianping Huang Chaojun Zhang Wuxing Wang 《Earthquake Science》 CSCD 2009年第2期149-157,共9页
Coseismic water level changes which may have been induced by the Wenchuan MS8.0 earthquake and its 15 larger aftershocks(MS≥5.4) have been observed at Tangshan well.We analyze the correlation between coseismic parame... Coseismic water level changes which may have been induced by the Wenchuan MS8.0 earthquake and its 15 larger aftershocks(MS≥5.4) have been observed at Tangshan well.We analyze the correlation between coseismic parameters(maximum amplitude, duration, coseismic step and the time when the coseismic reach its maximum amplitude) and earth-quake parameters(magnitude, well-epicenter distance and depth), and then compare the time when the coseismic oscillation reaches its maximum amplitude with the seismogram from Douhe seismic station which is about 16.3 km away from Tangshan well.The analysis indicates that magnitude is the main factor influencing the induced coseismic water level changes, and that the well-epicenter distance and depth have less influence.MS magnitude has the strongest correlation with the co-seismic water level changes comparing to MW and ML magnitudes.There exists strong correlation between the maximum amplitude, step size and the oscillation duration.The water level oscillation and step are both caused by dynamic strain sourcing from seismic waves.Most of the times when the oscillations reach their maximum amplitudes are between S and Rayleigh waves.The coseismic water level changes are due to the co-effect of seismic waves and hydro-geological environments. 展开更多
关键词 水位变化 地震参数 唐山 余震 汶川 应变地震波 特征 水文地质环境
下载PDF
An Analytic Solution to Well-water Level Changes under Barometric Pressure
4
作者 Liu Chunping Deng Liang +2 位作者 Liao Xin Wan Fei Shi Yun 《Earthquake Research in China》 2011年第2期240-249,共10页
Under barometric pressure,groundwater flow in well-aquifer systems is a kind of hydro-mechanical coupling problem.Applying the flux boundary conditions on borehole wall and water pressure equilibrium conditions inside... Under barometric pressure,groundwater flow in well-aquifer systems is a kind of hydro-mechanical coupling problem.Applying the flux boundary conditions on borehole wall and water pressure equilibrium conditions inside and outside the borehole wall under barometric pressure(BP),an analytic solution to well-water level changes has been proposed in this paper.The formulation shows that the BP coefficients increase with time and tend to BP constant.The Change of BP coefficients over time depends only on the ratio of transmissivity(T) to the well radius squared(r2w),and has nothing to do with the change in BP.The BP constant only relates to aquifer loading efficiency(B),and has nothing to do with the aquifer transmissivity and well radius.The BP coefficients change over time in the analytic formulation is consistent with the analysis of measured data from the Nanxi wells.Based on the BP coefficient changes over time,a parameter estimation method is suggested and discussed in its application to the estimation of the aquifer BP constant(or B) and transmissivity by using the Nanxi well data. 展开更多
关键词 水位变化 大气压 解析解 含水层系统 参数估计方法 耦合问题 流体力学 地下水流
下载PDF
Monitoring absolute vertical land motions and absolute sea-level changes from GPS and tide gauges data over French Polynesia
5
作者 Xianjie Li Jean-Pierre Barriot +2 位作者 Bernard Ducarme Marania Hopuare Yidong Lou 《Geodesy and Geodynamics》 EI CSCD 2024年第1期13-26,共14页
In this study,we estimate the absolute vertical land motions at three tidal stations with collocated Global Navigation Satellite System(GNSS)receivers over French Polynesia during the period 2007-2020,and obtain,as an... In this study,we estimate the absolute vertical land motions at three tidal stations with collocated Global Navigation Satellite System(GNSS)receivers over French Polynesia during the period 2007-2020,and obtain,as ancillary results,estimates of the absolute changes in sea level at the same locations.To verify our processing approach to determining vertical motion,we first modeled vertical motion at the International GNSS Service(IGS)THTI station located in the capital island of Tahiti and compared our estimate with previous independent determinations,with a good agreement.We obtained the following estimates for the vertical land motions at the tide gauges:Tubuai island,Austral Archipelago-0.92±0.17 mm/yr,Vairao village,Tahiti Iti:-0.49±0.39 mm/yr,Rikitea,Gambier Archipelago-0.43±0.17 mm/yr.The absolute variations of the sea level are:Tubuai island,Austral Archipelago 5.25±0.60 mm/yr,Vairao village,Tahiti Iti:3.62±0.52 mm/yr,Rikitea,Gambier Archipelago 1.52±0.23 mm/yr.We discuss these absolute values in light of the values obtained from altimetric measurements and other means in French Polynesia. 展开更多
关键词 GPS Tide gauges Sea level changes Vertical land motion
原文传递
Deformation and failure mechanism of Yanjiao rock slope influenced by rainfall and water level fluctuation of the Xiluodu hydropower station reservoir 被引量:2
6
作者 Wang Neng-feng He Jian-xian +2 位作者 DU Xiao-xiang Cai Bin Zhao Jian-jun 《Journal of Mountain Science》 SCIE CSCD 2023年第1期1-14,共14页
With the construction of the Xiluodu hydropower station on the Jinsha River,the reservoir impoundment began in 2013 and the water level fluctuates annually between 540 m and 600 m above sea level.The Yanjiao rock slop... With the construction of the Xiluodu hydropower station on the Jinsha River,the reservoir impoundment began in 2013 and the water level fluctuates annually between 540 m and 600 m above sea level.The Yanjiao rock slope which is located on the left bank of the Jinsha River 75 km upstream of the Xiluodu dam site,began to deform in 2014.The potential failure of the slope not only threatens Yanjiao town but also affects the safe operation of the Xiluodu reservoir.This paper is to find the factors influencing the Yanjiao slope deformation through field investigation,geotechnical reconnaissance,and monitoring.Results show that the Yanjiao slope can be divided into a bank collapse area(BCA)and a strong deformation area(SDA)based on the crack distribution characteristics of the slope.The rear area of the slope has been experiencing persistent deformation with a maximum cumulative displacement(GPS monitoring point G4)of 505 mm and 399 mm in the horizontal and vertical directions,respectively.The potential failure surface of the slope is formed 36 m below the surface based on the borehole inclinometer.The bank collapses of the Yanjiao slope are directly caused by the reservoir impoundment while the deformation area of the slope is affected by the combination of the rainfall and reservoir water level fluctuation.Based on mechanism of the Yanjiao slope,prestressed anchor combined with the surface drainage and slope unloading are recommended to prevent potential deformation. 展开更多
关键词 Reservoir rock slope RAINFALL Reservoir water level fluctuation Deformation characteristics Slope failure mechanism
原文传递
Determining safe yield and mapping water level zoning in groundwater resources of the Neishabour Plain 被引量:1
7
作者 Parisa Kazerani Ali Naghi Ziaei Kamran Davari 《Journal of Groundwater Science and Engineering》 2023年第1期47-54,共8页
Groundwater is a crucial sources of water supply,especially in arid and semi-arid areas around the world.With uncontrolled withdrawals and limited availability of these resources,it is essential to determine the safe ... Groundwater is a crucial sources of water supply,especially in arid and semi-arid areas around the world.With uncontrolled withdrawals and limited availability of these resources,it is essential to determine the safe yield of these valuable resources.The Hill method approach was used in this study to determine the safe yield the Neishabour aquifer in Khorasan Razvi province in Iran.The results showed that the safe yield in the Neishabour aquifer is 60%lower than the current pumping amounts during the study period,indicating that further overdrafts could result in the destruction of this aquifer.This highlights the importance of using the Hill method to estimate the permitted exploitation from other aquifers,thus preventing problems caused by over-extraction and maintaining stability of global groundwater levels. 展开更多
关键词 Hill method water level zoning maps Groundwater pumping Safe yield Groundwater crisis
下载PDF
Effective groundwater level recovery from mining reduction: Case study of Baoding and Shijiazhuang Plain area
8
作者 Tian Nan Chen Yue +4 位作者 Wen-geng Cao En-lin Mu Yang Ou Zhen-sheng Lin Wei Kang 《Journal of Groundwater Science and Engineering》 2023年第3期278-293,共16页
The effective recovery of water level is a crucial measure of the success of comprehensive groundwater over-exploitation management actions in North China.However,traditional evaluation method do not directly capture ... The effective recovery of water level is a crucial measure of the success of comprehensive groundwater over-exploitation management actions in North China.However,traditional evaluation method do not directly capture the relationship between mining and other equilibrium elements.This study presents an innovative evaluation method to assess the water level recovery resulting from mining reduction based on the relationship between variation in exploitation and recharge.Firstly,the recharge variability of source and sink terms for both the base year and evaluation year is calculated and the coefficient of recharge variationβis introduced,which is then used to calculate the effective mining reduction and solve the water level recovery value caused by the effective mining reduction,and finally the water level recovery contribution by mining reduction is calculated by combining with the actual volume of mining reduction in the evaluation area.This research focuses on Baoding and Shijiazhuang Plain area,which share similar hydrogeological conditions but vary in groundwater exploitation and utilization.As the effect of groundwater level recovery with mining reduction was evaluated in these two areas as case study.In 2018,the results showed an effective water level recovery of 0.17 m and 0.13 m in the shallow groundwater of Shijiazhuang and Baoding Plain areas,respectively.The contributions of recovery from mining reduction were 76%and 57.98%for these two areas,respectively.It was notable that the water level recovery was most prominent in the foothill plain regions.From the evaluation results,it is evident that water level recovery depends not only on the intensity of groundwater mining reduction,but also on its effectiveness.The value of water level recovery alone cannot accurately indicate the intensity of mining reduction,as recharge variation significantly influences water level changes.Therefore,in practice,it is crucial to comprehensively assess the impact of mining reduction on water level recovery by combining the coefficient of recharge variation with the contribution of water level recovery from mining reduction.This integrated approach provide a more reasonable and scientifically supported basis,offering essential data support for groundwater management and conservation.To improve the accuracy and reliability of evaluation results,future work will focus on the standardizing and normalizing raw data processing. 展开更多
关键词 water level recovery water balance Effective mining reduction Coefficient of recharge variation water level recovery contribution
下载PDF
Organic Carbon Deposition on the Inner Shelf of the East China Sea Constrained by Sea Level and Climatic Changes Since the Last Deglaciation
9
作者 ZHANG Mingyu LIU Xiting +7 位作者 XU Fangjian LI Anchun GU Yu CHANG Xin ZHUANG Guangchao ZHANG Kaidi BI Naishuang WANG Houjie 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第5期1300-1312,共13页
The East China Sea(ECS),which is located in the transitional zone between land and ocean,is the main site for the burial of sedimentary organic carbon.Despite good constraints of the modern source to the sinking proce... The East China Sea(ECS),which is located in the transitional zone between land and ocean,is the main site for the burial of sedimentary organic carbon.Despite good constraints of the modern source to the sinking process of organic carbon,its fate in response to changes in climate and sea level since the last deglaciation remains poorly understood.We aim to fill this gap by presenting a high-resolution sedimentary record of core EC2005 to derive a better understanding of the evolution of the depositional environment and its control on the organic deposition since 17.3 kyr.Our results suggest that sedimentary organic carbon was deposited in a terrestrial environment before the seawater reached the study area around 13.1 kyr.This significant transition from a terrestrial environment to a marine environment is reflected by the decrease in TOC/TN and TOC/TS ratios,which is attributed to deglacial sea level rise.The sea level continued to rise until it reached its highstand at approximately 7.3 kyr when the mud depocenter was developed.Our results further indicate that the deposition of the sedimentary organic carbon could respond quickly to abrupt cold events,including the Heinrich stadial 1 and the Younger Dryas during the last deglaciation,as well as‘Bond events'during the Holocene.We propose that the rapid response of the organic deposition to those cold events in the northern hemisphere is linked to the East Asian winter monsoon.These new findings demonstrate that organic carbon deposition and burial on the inner shelf could effectively document sea level and climatic changes. 展开更多
关键词 organic carbon East China Sea mud sediments sea level changes environmental evolution
下载PDF
Failure mechanism of a large-scale composite deposits caused by the water level increases
10
作者 ZHANG Xin TU Guo-xiang +3 位作者 LUO Qi-feng TANG Hao ZHANG Yu-lin LI An-run 《Journal of Mountain Science》 SCIE CSCD 2023年第5期1369-1384,共16页
The failure of slope caused by variations in water levels on both banks of reservoirs is common.Reservoir landslides greatly threaten the safety of reservoir area.Taking large-scale composite deposits located on the L... The failure of slope caused by variations in water levels on both banks of reservoirs is common.Reservoir landslides greatly threaten the safety of reservoir area.Taking large-scale composite deposits located on the Lancang River in Southwest China as a study case,the origin of the deposits was analyzed based on the field investigation and a multi-material model was established in the physical model test.Combined with numerical simulation,the failure mechanism of the composite deposits during reservoir water level variations was studied.The results indicate that the deformation of the large-scale composite deposits is a staged sliding mode during the impoundment process.The first slip deformation is greatly affected by the buoyancy weight-reducing effect,and the permeability of soil and variation in the water level are the factors controlling slope deformation initiation.The high water sensitivity and low permeability of fine grained soil play an important role in the re-deformation of deposits slope.During the impoundment process,the deformation trend of the deposit slope is decreasing,and vertical consolidation of soil and increasing hydrostatic pressure on the slope surface are the main reasons for deformation attenuation.It is considered that the probability of large-scale sliding of the deposits during the impoundment period is low.But the damage caused by local bank collapse of the deposit slope still needs attention.The results of this paper will further improve our understanding of the failure mechanism of composite deposits caused by water level increases and provide guidance for the construction of hydropower stations. 展开更多
关键词 Composite deposits Reservoir water level rise Physical model test Finite-differencemethod Failure mechanism
原文传递
Spatial changes and driving factors of lake water quality in Inner Mongolia, China
11
作者 REN Xiaohui YU Ruihong +10 位作者 LIU Xinyu SUN Heyang GENG Yue QI Zhen ZHANG Zhuangzhuang LI Xiangwei WANG Jun ZHU Penghang GUO Zhiwei WANG Lixin XU Jifei 《Journal of Arid Land》 SCIE CSCD 2023年第2期164-179,共16页
Lakes play important roles in sustaining the ecosystem and economic development in Inner Mongolia Autonomous Region of China,but the spatial patterns and driving mechanisms of water quality in lakes so far remain uncl... Lakes play important roles in sustaining the ecosystem and economic development in Inner Mongolia Autonomous Region of China,but the spatial patterns and driving mechanisms of water quality in lakes so far remain unclear.This study aimed to identify the spatial changes in water quality and the driving factors of seven lakes(Juyanhai Lake,Ulansuhai Lake,Hongjiannao Lake,Daihai Lake,Chagannaoer Lake,Hulun Lake,and Wulannuoer Lake)across the longitudinal axis(from the west to the east)of Inner Mongolia.Large-scale research was conducted using the comprehensive trophic level index(TLI(Σ)),multivariate statistics,and spatial analysis methods.The results showed that most lakes in Inner Mongolia were weakly alkaline.Total dissolved solids and salinity of lake water showed obvious zonation characteristics.Nitrogen and phosphorus were identified as the main pollutants in lakes,with high average concentrations of total nitrogen and total phosphorus being of 4.05 and 0.21 mg/L,respectively.The values of TLI(Σ)ranged from 49.14 to 71.77,indicating varying degrees of lake eutrophication,and phosphorus was the main driver of lake eutrophication.The lakes of Inner Mongolia could be categorized into lakes to the west of Daihai Lake and lakes to the east of Daihai Lake in terms of salinity and TLI(Σ).The salinity levels of lakes to the west of Daihai Lake exceeded those of lakes to the east of Daihai Lake,whereas the opposite trend was observed for lake trophic level.The intensity and mode of anthropogenic activities were the driving factors of the spatial patterns of lake water quality.It is recommended to control the impact of anthropogenic activities on the water quality of lakes in Inner Mongolia to improve lake ecological environment.These findings provide a more thorough understanding of the driving mechanism of the spatial patterns of water quality in lakes of Inner Mongolia,which can be used to develop strategies for lake ecosystem protection and water resources management in this region. 展开更多
关键词 SALINITY lake eutrophication lake water quality comprehensive trophic level index anthropogenic activities Daihai Lake Inner Mongolia
下载PDF
Evolutive Trend of Water Level in the Ebrie Lagoon by Reconstitution of the Tide Gauge Time Series in Front of the Abidjan Coastline (Côte d’Ivoire)
12
作者 Samassy Rokyatou Yéo Kokoa Chia Marie Reine Allialy +3 位作者 Tano Anoumou Rene Mondé Sylvain Sangaré Seydou Kouadio Affian 《Journal of Water Resource and Protection》 2023年第10期526-538,共13页
The latest Intergovernmental Panel on Climate Change (IPCC) report shows that sea-level rise, which has been accelerated since the 19th century resulting to the global warming, threatens coastal areas with high popula... The latest Intergovernmental Panel on Climate Change (IPCC) report shows that sea-level rise, which has been accelerated since the 19th century resulting to the global warming, threatens coastal areas with high population growth. A Global Sea Level Observing System (GLOSS) assessment highlighted the lack of data in Africa, and in Côte d’Ivoire in particular. In order to estimate the evolutionary trend of sea level along the Ivorian coast, and to draw up preventive plans to protect properties and populations, we digitized 65 years of historical tidegrams recorded in the Ebrie Lagoon, using the “Surfer” and “Nunieau” software, then processed them using “T-Tide” and “U-Tide” software. The average levels were calculated using the Demerliac filter from complete daily (day and night) recordings for providing a usable database of 31 years of hourly lagoon data from 1979 to 2015. Our results show that a mean water level in lagoon is 1.04 m. The evolutionary trend in sea level, estimated in the lagoon via the Vridi canal, during the rainy season is the most significant at 2.93 mm/year. This is followed by the dry season, with a trend of 2.89 mm/year. The flood season trend is 2.78 mm/year. This suggests that marine water inflows dominate continental inflows. Our results highlight the vulnerability of Côte d’Ivoire’s coasts to the risk of marine submersion. 展开更多
关键词 TIDE Mean water level Temporal Variability Vridi Channel Marine Submersion
下载PDF
Evaluating the weekly changes in terrestrial water storage estimated by two different inversion strategies in the Amazon River Basin
13
作者 Bo Zhong Xianpao Li +2 位作者 Qiong Li Jiangtao Tan Xianyun Dai 《Geodesy and Geodynamics》 EI CSCD 2023年第6期614-626,共13页
In this study,we estimated the weekly Gravity Recovery and Climate Experiment(GRACE)spherical harmonic(SH)solutions and regional mascon solutions using GRACE-based Geopotential Difference(GPD)data and investigated the... In this study,we estimated the weekly Gravity Recovery and Climate Experiment(GRACE)spherical harmonic(SH)solutions and regional mascon solutions using GRACE-based Geopotential Difference(GPD)data and investigated their abilities in retrieving terrestrial water storage(TWS)changes over the Amazon River Basin(ARB)from January 2003 to February 2013.The performance of the weekly GPD-SH and GPDmascon solutions was evaluated by comparing them with the weekly GFZ-SH solutions,Global Land Data Assimilation Systems(GLDAS)-NOAH hydrological model outputs,and monthly GFZ-SH,GPD-SH,and CSRmascon solutions in the spatio-temporal and spectral domains.The results demonstrate that the weekly GPD-SH and GPD-mascon present good consistency with the weekly GFZ-SH solutions and GLDAS-NOAH estimates in the spatio-temporal domains,but GPD-mascon presents stronger signal amplitudes and more spatial details.The comparison of the monthly average of weekly estimates and monthly solutions demonstrates that the weekly GPD-mascon and GFZ-SH with DDK1 filtering are close to the monthly CSRmascon and GFZ-SH solutions,respectively.However,the signal amplitudes of TWS changes from GPD-SH and GFZ-SH with 650 km Gaussian filtering are smaller than the monthly solutions,and the corresponding Root Mean Square Errors between the TWS change time series from the monthly average of weekly solutions and monthly estimates are 18.12 mm(GPD-mascon),18.81 mm(GFZ-SH-DDK1),24.93 mm(GPDSH-G650km),and 33.07 mm(GFZ-SH-G650km),respectively.Additionally,the TWS change time series derived from weekly solutions present more high-frequency time-varying information than monthly solutions.Furthermore,the 300 km Gaussian filtering can improve the signal amplitudes of TWS changes from the weekly GPD-SH solutions more than those with 650 km Gaussian filtering,but the corresponding noise level is higher.The weekly GPD-SH and GPD-mascon solutions can extend the application scopes of GRACE and provide good complements to the current GRACE monthly solutions. 展开更多
关键词 Terrestrial water storage change Amazon River Basin GRACE-based geopotential differences Weekly solutions Performance evaluation
原文传递
Relationship Between Changes of River-lake Networks and Water Levels in Typical Regions of Taihu Lake Basin,China 被引量:6
14
作者 YIN Yixing XU Youpeng CHEN Ying 《Chinese Geographical Science》 SCIE CSCD 2012年第6期673-682,共10页
The typical regions of the Taihu Lake Basin,China,were selected to analyze the variation characteristics of river-lake networks under intensive human activities.The characteristics of the fractal dimension of river ne... The typical regions of the Taihu Lake Basin,China,were selected to analyze the variation characteristics of river-lake networks under intensive human activities.The characteristics of the fractal dimension of river networks and lakes for different periods were investigated and the influences of river system evolution on water level changes were further explored through the comparison of their fractal characters.The results are as follows:1) River network development of the study area is becoming more monotonous and more simple;the number of lakes is reducing significantly,and the water surface ratio has dropped significantly since the 1980s.2) The box dimension of the river networks in all the cities of the study area decreased slowly from the 1960s to the 1980s,while the decrease was significant from the 1980s to the 2000s.The variations of lake correlation dimension are similar to those of the river network box dimensions.This is unfavorable for the storage capacity of the river networks and lakes.3) The Hurst exponents of water levels were all between 0.5 and 1.0 from the 1960s to the 1980s,while decreased in the 2000s,indicating the decline in persistence and increase in the complexity of water level series.The paper draws a conclusion that the relationship between the fractal dimension of river-lake networks and the Hurst exponents of the water level series can reveal the impacts of river system changes on flood disasters to some extent:the disappearance of river networks and lakes will increase the possibility of flood occurrence. 展开更多
关键词 水位变化 太湖流域 网络 典型地区 江湖 中国 HURST指数 分形维数
下载PDF
How changes of groundwater level affect the desert riparian forest ecosystem in the Ejina Oasis,Northwest China 被引量:1
15
作者 HaiYang Xi JingTian Zhang +3 位作者 Qi Feng Lu Zhang JianHua Si TengFei Yu 《Research in Cold and Arid Regions》 CSCD 2019年第1期62-80,共19页
Groundwater is a key factor controlling the growth of vegetation in desert riparian systems. It is important to recognise how groundwater changes affect the riparian forest ecosystem. This information will not only he... Groundwater is a key factor controlling the growth of vegetation in desert riparian systems. It is important to recognise how groundwater changes affect the riparian forest ecosystem. This information will not only help us to understand the ecological and hydrological process of the riparian forest but also provide support for ecological recovery of riparian forests and water-resources management of arid inland river basins. This study aims to estimate the suitability of the Water Vegetation Energy and Solute Modelling(WAVES) model to simulate the Ejina Desert riparian forest ecosystem changes,China, to assess effects of groundwater-depth change on the canopy leaf area index(LAI) and water budgets, and to ascertain the suitable groundwater depth for preserving the stability and structure of desert riparian forest. Results demonstrated that the WAVES model can simulate changes to ecological and hydrological processes. The annual mean water consumption of a Tamarix chinensis riparian forest was less than that of a Populus euphratica riparian forest, and the canopy LAI of the desert riparian forest should increase as groundwater depth decreases. Groundwater changes could significantly influence water budgets for T. chinensis and P. euphratica riparian forests and show the positive and negative effects on vegetation growth and water budgets of riparian forests. Maintaining the annual mean groundwater depth at around 1.7-2.7 m is critical for healthy riparian forest growth. This study highlights the importance of considering groundwater-change impacts on desert riparian vegetation and water-balance applications in ecological restoration and efficient water-resource management in the Heihe River Basin. 展开更多
关键词 groundwater changes DESERT RIPARIAN forest EJINA OASIS WAVES leaf area index(LAI) water budgets
下载PDF
Influence of Seasonal Ground Water Level Fluctuations on the Stability of the Rohingya Refugee Camp Hills of Ukhiya, Teknaf, Cox’s Bazar, Bangladesh—A Threat for Sustainable Development
16
作者 Abu Taher Mohammad Shakhawat Hossain Sheikh Jafia Jafrin +7 位作者 Purba Anindita Khan Mahmuda Khatun Tanmoy Dutta Mohammad Hasan Imam Ruma Bakali Mohammad Hossain Sayem Mohammad Shakil Mahabub Mohammad Emdadul Haque 《Journal of Geoscience and Environment Protection》 2023年第5期384-403,共20页
Bangladesh is a south Asian Monsoonal Country and the recent precipitation pattern in the Cox’s Bazar area of Bangladesh is changing and increasing the number of monsoonal slope failures and landslide hazards in the ... Bangladesh is a south Asian Monsoonal Country and the recent precipitation pattern in the Cox’s Bazar area of Bangladesh is changing and increasing the number of monsoonal slope failures and landslide hazards in the Kutubpalong & Balukhali Rohingya camp area. An attempt has been made to see the influence of seasonal variation of ground water level (G.W.L.) fluctuations on the stability of the eco hills and forests of Ukhiya Teknaf region. Ukhiya hills are in great danger because of cutting trees from the hill slopes and it is well established that due to recent change of climate, short term rainfall for few consecutive days during monsoon might show an influence on the factor of safety (Fs) values of the camp hill slopes. A clear G.W.L. variation between dry and wet seasons has an influence on the stability (Fs) values indicating that climate has a strong influence on the stability and threatening sustainable development. A stable or marginally stable slope might be unstable during raining and show a variation of ground water level (G.W.L.). The generation of pore water pressure (P.W.P.) is also influenced by seasonal variation of ground water level. During wet season negative P.W.P. called suction plays an important role to occur slope failures in the Ukhiya hills. Based on all calculated factor of safety values (Fs) at different locations, four (4) susceptible landslide risk zones are identified. They are very high risk (Fs = 0.18 to 0.46), high risk (Fs = 0.56 to 0.75), medium risk (Fs = 0.76 to 1.0) and marginally stable areas (Fs ≈ 1). Proper geo-engineering measures must be taken by the concerned authorizes to reduce P.W.P. during monsoon by installing rain water harvesting system, allowing sufficient drainage & other geotechnical measures to reduce the risk of slope failures in the Ukhiya hills. Based on the stability factor (Fs) at different slope locations of the camp hills, a risk map of the investigated area has been produced for the local community for their safety and to build up awareness & to motivate them to evacuate the site during monsoonal slope failures. The established “Risk Maps” can be used for future geological engineering works as well as for sustainable planning, design and construction purposes relating to adaptation and mitigation of landslide risks in the investigated area. 展开更多
关键词 Stability Pore water Pressure Ground water level Rain & Risk Map
下载PDF
A Water Level Forecast of Pattani River in the Southern of Thailand by Deep Learning
17
作者 Prattana Deeprasertkul Kanoksri Sarinnapakorn 《Journal of Computer and Communications》 2023年第8期14-28,共15页
Nowadays, the deep learning methods are widely applied to analyze and predict the trend of various disaster events and offer the alternatives to make the appropriate decisions. These support the water resource managem... Nowadays, the deep learning methods are widely applied to analyze and predict the trend of various disaster events and offer the alternatives to make the appropriate decisions. These support the water resource management and the short-term planning. In this paper, the water levels of the Pattani River in the Southern of Thailand have been predicted every hour of 7 days forecast. Time Series Transformer and Linear Regression were applied in this work. The results of both were the water levels forecast that had the high accuracy. Moreover, the water levels forecasting dashboard was developed for using to monitor the water levels at the Pattani River as well. 展开更多
关键词 Time Series Transformer Linear Regression water level Prediction Data Cleansing
下载PDF
Modeling the Pressure Distribution and the Changes of Water Level around the Offshore Platforms Exposed to Waves, Using the Numerical Model of Flow 3D 被引量:1
18
作者 Milad Rashidinasab Mehdi Behdarvandi Askar 《Computational Water, Energy, and Environmental Engineering》 2017年第1期97-106,共10页
The humans’ need to use the oceans for exploration and extraction of oil has led to the development of engineering science in the field of offshore structures. Since it’s important to examine the offshore structures... The humans’ need to use the oceans for exploration and extraction of oil has led to the development of engineering science in the field of offshore structures. Since it’s important to examine the offshore structures from different aspects and perspectives, we would have to evaluate many different parameters about them. So categorizing these parameters can help to perform their related analysis with more accuracy and more details. Due to the efficient force it exerts on the structure, the pressure distribution around every marine or hydraulic structure has a significant importance, and it even accounts for one of the dominant issues in designing and building of such structures. In the present study, an oil platform located in Phase 15 of South Pars oil fields, located in the Persian Gulf waters, has been analyzed using the FLOW 3D software. The outputs indicate that the pressure of water is distributed almost hydrostatically with the depth, and its maximum reaches 0.6 MPa at the bottom. 展开更多
关键词 Pressure Distribution OFFSHORE PLATFORMS changes of water level MODELING
下载PDF
Displaying Water Table Levels, Flow Direction for Predicting Construction Techniques Using Geographic Information: Case Study of Kumba (South West, Cameroon)
19
作者 Benjamin Bahel Blaise Bayiha Ngwem +5 位作者 Cyrille Sigue Bepuaka Ekuka Martin Molua Ndive Alain Christian Bock Hyeng Emmanuel Yamb Sébastien Owona 《Open Journal of Civil Engineering》 2023年第2期388-398,共11页
The rapid economic growth of the town present the matter of water issue as a problem to human life human life, construction life, agriculture, etc. This study is to predict techniques of foundation construction throug... The rapid economic growth of the town present the matter of water issue as a problem to human life human life, construction life, agriculture, etc. This study is to predict techniques of foundation construction through the displaying of the water table at the flow direction in the town of Kumba and GIS. It is characterized by a significant research question which is the level of fall and rise in groundwater levels within the town of Kumba and this influence on choice of types of foundation in construction. This study is directed to decision makers, and technicians of the construction field to develop policies facilitating the supervision when building construction foundation by informing about water level depth and its flow direction in the town. To achieve this, depths of static water levels were measured in over 200 randomly selected hand-dug wells in Kumba, after their geolocation and data were collected during the dry season (November and March 2017) and during the rainy season (between April and October 2017). Data were analyzed and treated using Microsoft Excel and GIS software us as Golden Surfer, Global Mapper, and ArcGIS. The results show variations of water level and those areas that may threaten foundation construction. Quarter as Kumba Station, Mile 1, Bulletin Street (Fongong Quarter), and parts of Fiango show that water table is to deep water and proper for the shallow foundation but very hard for water supply through borehole. Groundwater flow direction was revealed to be towards the south and southeastern parts of Kumba. The significant of the study is to propose to the technician the direct application on the field of chosen types of foundations according to the quarter and proposed groundwater supply possibilities. 展开更多
关键词 GIS Prediction water Table level Kumba FOUNDATION
下载PDF
Potential influence of water level changes on energy flows in a lake food web 被引量:11
20
作者 WANG YuYu YU XiuBo +3 位作者 LI WenHua XU Jun CHEN YuWei FAN Na 《Chinese Science Bulletin》 SCIE EI CAS 2011年第26期2794-2802,共9页
Large seasonal water-level fluctuations may influence isotopic signatures of primary producers and the types and amounts of these potential food sources accessible to aquatic fauna of Poyang Lake,the largest freshwate... Large seasonal water-level fluctuations may influence isotopic signatures of primary producers and the types and amounts of these potential food sources accessible to aquatic fauna of Poyang Lake,the largest freshwater lake in China.In this study,the isotopic signatures of primary producers and consumers were determined,stable carbon and nitrogen isotope analysis and mixing models were combined to investigate the influence of water levels on the diet and isotopic composition of Poyang Lake fish and invertebrates.Five potential food sources (seston,benthic organic matter,aquatic macrophytes,attached algae,and terrestrial plants),4 species of invertebrates,and 10 species of fish were collected from the lake area during dry and wet seasons between January 2009 and April 2010.The δ 13C values of invertebrates and most fish were within the range of δ 13C values of the potential food sources for both seasons.The δ 13C values of invertebrates and most fish were lower in the dry season than in the wet season,whereas the δ 15N values exhibited different patterns for different species.Mixing models indicated that the most important food sources for common lake fauna were seston in the dry season and aquatic macrophytes and terrestrial plants in the wet season.The fauna were more omnivorous in the wet season than in the dry season.The food web dynamics of Poyang Lake are strongly influenced by changes in the abundance and accessibility of different basal food sources that occur because of seasonal flood pulses.The trophic links within the aquatic communities of Poyang Lake are modified by water-level fluctuations. 展开更多
关键词 水位变化 食物网 无脊椎动物 食物来源 同位素特征 流量 能量 水生动物
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部