期刊文献+
共找到735,139篇文章
< 1 2 250 >
每页显示 20 50 100
Design and Sizing of an Ecological Wastewater Treatment System in a School Environment: A Case Study of Ndiebene Gandiol 1 School
1
作者 Falilou Coundoul Abdou Khafor Ndiaye +1 位作者 Abdoulaye Deme David de la Varga 《Journal of Water Resource and Protection》 CAS 2024年第1期41-57,共17页
The primary objective of this study was to design and size a sustainable sanitation solution for the Ndiebene Gandiol 1 school located in the eponymous commune in northern Senegal. Field investigations led to the coll... The primary objective of this study was to design and size a sustainable sanitation solution for the Ndiebene Gandiol 1 school located in the eponymous commune in northern Senegal. Field investigations led to the collection of wastewater samples. Their analysis revealed specific pollutant loads, including loads of BOD5 3.6966 kgO<sub>2</sub>/day and COD of 12.8775 kgO<sub>2</sub>/day, which were central to the design phase. Following a rigorous assessment of the existing sanitation infrastructure, constructed wetland (CWs) emerged as the most appropriate ecological solution. This system, valued for its ability to effectively remove contaminants, was tailored to the specific needs of the site. Consequently, the final design of the filter extends over 217.16 m<sup>2</sup>, divided into two cells of 108.58 m<sup>2</sup> each, with dimensions of 12.77 m in length and 8.5 m in width. The depth of the filtering medium is approximately 0.60 m, meeting the standards while ensuring maximized purification. Typha, an indigenous and prolific plant known for its purification abilities, was selected as the filtering agent. Concurrently, non-crushed gravel was chosen for its proven filtration capacity. This study is the result of a combination of scientific rigor and design expertise. It provides a holistic view of sanitation for Ndiebene Gandiol. The technical specifications and dimensions of the constructed wetland filter embody an approach that marries indepth analysis and practical application, all aimed at delivering an effective and long-lasting solution to the local sanitation challenges. By integrating precise scientific data with sanitation design expertise, this study delivers a holistic solution for Ndiebene Gandiol. The detailed dimensions and specifications of the constructed wetland filter reflect a methodology that combines meticulous analysis with practical adaptation, aiming to provide an effective and sustainable response to the challenges of rural and school sanitation in the northern region of Senegal. 展开更多
关键词 water Review Hydraulic Engineering water treatment Agricultural Irrigation SANITATION Engineering Environment
下载PDF
A Comparative Analysis of Vetiver and Typha in Ecological Wastewater Treatment Using a Horizontal Flow Constructed Wetlands in Rural Setting
2
作者 Falilou Coundoul Abdou Khafor Ndiaye +1 位作者 Abdoulaye Deme Antonina Torrens Armegnol 《Journal of Agricultural Chemistry and Environment》 2024年第1期67-82,共16页
This study presents an assessment of wastewater ecological treatment processes utilizing a horizontal flow bio-reactor at the Ndiebene Gandiol 1 school. It primarily aims to juxtapose the filtration efficacy of two di... This study presents an assessment of wastewater ecological treatment processes utilizing a horizontal flow bio-reactor at the Ndiebene Gandiol 1 school. It primarily aims to juxtapose the filtration efficacy of two distinct vegetative cells, Vetiver and Typha, in the pursuit of sustainable wastewater management strategies for rural scholastic institutions. A synergistic approach was employed, integrating on-site surveys for site-specific insights and laboratory analyses to quantify the pollutant loads pre- and post-treatment. Our findings indicate that both Vetiver and Typha-infused filter beds significantly reduce most contaminants, with particular success in diminishing chemical oxygen demand (COD) and biological oxygen demand (BOD5). Vetiver was notable for its superior reduction of COD, achieving an average effluent concentration of 74 mg/L, in contrast to Typha’s 155 mg/L. Conversely, Typha excelled in suspended solids removal, registering 1 mg/L against Vetiver’s 3 mg/L. While both systems notably surpassed the target metrics across several indicators, including fecal coliform reduction, our results pinpoint the need for refinement in phosphate remediation. Conclusively, the study underscores the efficacy of both Vetiver and Typha systems in rural wastewater treatment contexts, with their integrative application potentially paving the way for enhanced system robustness and efficiency. The outcomes herein highlight the imperative for continued research to further hone these ecological treatment modalities, especially concerning phosphate elimination. 展开更多
关键词 Hydraulics water treatment Agricultural Irrigation SANITATION Engineering Environment
下载PDF
Ecological Wastewater Treatment System in a School Environment Using a Horizontal Flow Biological Reactor: The Case of Typha
3
作者 Falilou Coundoul Abdou Khafor Ndiaye Abdoulaye Deme 《Journal of Environmental Protection》 2024年第1期1-12,共12页
The overarching goal of this study is to offer an effective and sustainable solution to the challenges of sanitation in rural and school settings in the northern region of Senegal. The study explores a wastewater trea... The overarching goal of this study is to offer an effective and sustainable solution to the challenges of sanitation in rural and school settings in the northern region of Senegal. The study explores a wastewater treatment approach based on phytoremediation, with a particular focus on the use of horizontally-flowing reed bed filters. Furthermore, it aims to adapt and optimize these systems for the specific needs of Senegal, focusing on wastewater in school environments. Thus, we constructed a horizontally-flowing reed bed filter, planted with Typha, at the Ndiébène Gandiol school in Senegal. We will investigate the efficiency of wastewater treatment by this horizontally-flowing reed bed filter, emphasizing the role of the plant used: Typha. The filter is described in detail, specifying its dimensions, its composition of flint gravel, and the choice of plants, namely Typha. The experimental protocol is detailed, describing the sampling at the entrance and exit of the filter to evaluate water quality. The parameters analyzed include Chemical Oxygen Demand (COD), Biochemical Oxygen Demand over 5 days (BOD5), suspended solids, ammonium, nitrates, phosphates, pH, conductivity, and fecal coliforms. The results indicate a significant improvement in water quality after treatment. COD, BOD5, suspended solids, and fecal coliforms are greatly reduced, thus demonstrating the efficacy of the Typha filter. However, nitrate concentrations remain relatively stable, suggesting room for improvement in their elimination. A perspective of reuse of the treated water is considered, showing that the effluents from the planted filter meet Senegalese and international standards for irrigation. The findings suggest that these waters could be used for a variety of crops, thereby reducing the pressure on freshwater resources. In conclusion, the Typha-based filtration system shows promising results for improving water quality in this region of Senegal. However, adjustments are necessary for more effective nitrate removal. This study paves the way for sustainable use of treated wastewater for irrigation, thus contributing to food security and the preservation of water resources. 展开更多
关键词 Hydraulic Engineering Wastewater Quality Wastewater treatment Agricultural Irrigation SANITATION Engineering ENVIRONMENT
下载PDF
Performance of a Horizontal Flow Constructed Reed Bed Filter for Municipal Wastewater Treatment: The Case Study of the Prototype Installed at Gaston Berger University, Saint-Louis, Senegal
4
作者 Abdou Khafor Ndiaye Falilou Coundoul +2 位作者 Abdoulaye Deme Antonina Torrens Armengol Abdoulaye Senghor 《Natural Resources》 2024年第1期1-16,共16页
In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed... In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed only a slight temperature variation, from an influent average of 26.3°C to an effluent of 24.7°C. Electrical conductivity decreased from 1331 mS/cm to 974.5 mS/cm post-primary treatment, with suspended solids (SS) dramatically reduced from 718.9 mg/L to 5.7 mg/L in the final effluent. Biochemical oxygen demand (BOD5) and chemical oxygen demand (COD) saw a notable decrease, from initial levels of 655.6 mg/L and 1240 mg/L to 2.3 mg/L and 71.3 mg/L, respectively. Nitrogenous compounds (N-TN) and phosphates () also decreased significantly, indicating the system’s nutrient removal capacity. Microbiological analysis revealed a reduction in fecal coliforms from 7.5 Ulog/100ml to 1.8 Ulog/100ml and a complete elimination of helminth eggs. The presence of Phragmites and Typha was instrumental in enhancing these reductions. The system’s compliance with the Senegalese standards for disposal into natural environments, WHO recommendations for unrestricted water reuse in irrigation, and the European legislation for water reuse was established. The effluent quality met the stringent criteria for various classes of agricultural reuse, illustrating the system’s potential for sustainable water management. This wetland model presents a robust solution for water-stressed regions, ensuring environmental protection while supporting agricultural needs. The study calls for ongoing research to further refine the system for optimal, reliable wastewater treatment and water resource sustainability. 展开更多
关键词 Constructed Wetlands Horizontal Flow Reed Beds Wastewater treatment Phragmites and Typha Plants Physicochemical Pollutant Removal Microbiological Indicators Fecal Coliforms and Helminth Eggs water Quality Improvement Senegal water Reuse Standards Sustainable water Management Agricultural Irrigation Reuse Nutrient Removal Efficiency Environmental Engineering Ecological Sanitation Systems
下载PDF
Ecological Wastewater Treatment System Using a Horizontal Flow Biological Reactor: The Case of Vetiver
5
作者 Falilou Coundoul Abdou Khafor Ndiaye Abdoulaye Deme 《Journal of Environmental Protection》 2024年第1期26-38,共13页
Confronted with the challenge of wastewater management, particularly in the school environment of Senegal, our study set out to achieve multiple objectives. Following field surveys, laboratory analyses of wastewater s... Confronted with the challenge of wastewater management, particularly in the school environment of Senegal, our study set out to achieve multiple objectives. Following field surveys, laboratory analyses of wastewater samples were carried out, revealing a significant pollutant load. In the community of Gandiol, near Saint-Louis (Senegal), the school of Ndiebene Gandiol 1 faces significant sanitation challenges. Our study aimed to address this issue by using a constructed filter composed of two filtering bed cells measuring 12 × 8.5 m, preceded by a septic tank. We particularly focused on the influence of Vetiver;a plant chosen for its purification potential. Our analyses showed remarkable efficiency of the filter. Elimination rates reached 95% for 5-Day Biochemical Oxygen Demand (BOD5), 91% for Chemical Oxygen Demand (COD), and 92% for SS, far exceeding the Senegalese standards set at 50 mg/L, 200 mg/L, and 40 mg/L, respectively. Furthermore, the concentration of fecal coliforms was reduced to 176 FCU/100mL, well below the Senegalese threshold of 2000 FCU/100mL and close to the World Health Organization’s (WHO) recommendation of 1000 FCU/100mL. However, despite these promising results, some parameters, particularly the concentration of certain pollutants, approached the thresholds defined by European legislation. For example, for Suspended Solids (SS), the post-treatment level of 3 mg/L was well below the Senegalese standard but edged close to the European minimum of 10 mg/L. In conclusion, the Vetiver filter demonstrated a remarkable ability to treat school wastewater, offering high pollutant elimination percentages. These results suggest significant opportunities for the reuse of treated water, potentially in areas such as irrigation, though some adjustments may be necessary to meet the strictest standards such as those of the European union (EU). 展开更多
关键词 Hydraulic Engineering Wastewater Quality Wastewater treatment Agricultural Irrigation SANITATION ENGINEERING ENVIRONMENT
下载PDF
Occurrences of Glucocorticoids in Aquatic Environment and Their Removal during Wastewater Treatment
6
作者 吴清晨 吴世闵 +5 位作者 张茵茵 ANDERE Clement Miruka 朱大海 张艾 刘亚男 薛罡 《Journal of Donghua University(English Edition)》 CAS 2023年第3期293-318,共26页
Glucocorticoids(GCs) are a group of endocrine-disrupting compounds(EDCs) frequently prescribed against various medical conditions.Recently,GCs have been shown to be effective in managing septic shock in patients infec... Glucocorticoids(GCs) are a group of endocrine-disrupting compounds(EDCs) frequently prescribed against various medical conditions.Recently,GCs have been shown to be effective in managing septic shock in patients infected with the 2019 novel coronavirus(COVID-19).Due to colossal consumption and potential risks to aquatic organisms,GCs have immensely attracted the focus of the scientific research community as a water pollutant.Therefore,the aim of this paper is to review the current knowledge on the occurrence of various GCs in the aquatic environment and their removal during wastewater treatment.A variety of GCs are ubiquitous in surface water,hospital wastewater,and sewage water worldwide.And the minimum concentration in volume is below 0.01 ng/L,and the maximum one is 10 000 ng/L,and enter the environment through hospital and urban wastewater discharging.Compared with natural GCs,higher risks to aquatic environments could be induced by synthetic GCs.The current activated sludge processes used in wastewater treatment plants(WWTPs) are not fully effective in eliminating GCs,some of which may further increase the risk of GC in the environment.In comparison with the aerobic process in WWTPs,the anaerobic and anoxic processes were found to be more efficient for GC degradation.Of the studied GCs,fluticasone propionate,clobetasol propionate,fluocinolone acetonide,and triamcinolone acetonide need more attention due to their low removal efficiencies and strong toxicity.Among the advanced treatment processes,reverse osmosis,ultraviolet irradiation,CaO_(2),and plasma could achieve significant GC activity removal while micro/ultra-filtration,chlorination,and ozonation were less efficient. 展开更多
关键词 glucocorticoid(GC) endocrine disrupting compound(EDC) wastewater treatment plant(WWTP) advanced wastewater treatment
下载PDF
Application of metal organic framework in wastewater treatment 被引量:3
7
作者 Xiaoge Liu Yuying Shan +2 位作者 Songtao Zhang Qingquan Kong Huan Pang 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第3期698-721,共24页
Water pollution is an increasingly serious environmental problem because many pollutants have carcinogenic effects on humans and aquatic organisms.Metal organic framework(MOF),made up of metal ions and multifunctional... Water pollution is an increasingly serious environmental problem because many pollutants have carcinogenic effects on humans and aquatic organisms.Metal organic framework(MOF),made up of metal ions and multifunctional organic ligands,has been one of the most concerned materials because of its adjustable and regular pore structure.MOFs have always shown attractive advantages in membrane separation and adsorption technologies,among which water-stable MOFs are particularly prominent in wastewater treatment(WWT)applications.This review systematically summarizes the application of MOF membranes in membrane filtration,membrane pervaporation and membrane distillation.Also,the adsorption mechanisms of heavy metals,dyes and antibacterials in wastewater have been concluded.In order to tap the full application potential of pristine MOFs in sustainable wastewater treatment,current challenges are discussed in detail and future research directions are proposed. 展开更多
关键词 Metal-organic framework Membranes ADSORPTION Wastewater treatment
下载PDF
Wastewater Treatment Trial by Double Filtration on Granular Activated Carbon (GAC) Prepared from Peanut Shells
8
作者 Mafory Bangoura Alhassane Diami Diallo +1 位作者 Ahmed Sékou Diallo Cellou Kante 《Green and Sustainable Chemistry》 CAS 2023年第1期1-8,共8页
The aim of this work is the purification of wastewater by double filtration on granular activated carbon prepared from peanut shells. The samples of carbonized peanut shells were activated with 35% sulfuric acid and f... The aim of this work is the purification of wastewater by double filtration on granular activated carbon prepared from peanut shells. The samples of carbonized peanut shells were activated with 35% sulfuric acid and finally, we proceeded to the purification tests on double filtration of wastewater. Granular activated carbons (GAC) were very effective for the treatment of turbidity, dissolved oxygen, suspended solids, iron, COD and BOD5 but the best results were observed with nitrite, nitrate and phosphate. However, the second filtration was the most efficient while the lowest rates were observed for pH (17.91% on average), and conductivity (29.71% on average). In addition, this work has allowed increasing the dissolved oxygen by more than 50.16% at the exit of the first filter and more than 105.36% at the exit of the second filter. This study shows that granular activated carbon prepared from peanut shells could be a credible alternative for developing countries in the control of pollution and environmental protection. 展开更多
关键词 Wastewater treatment Activated Carbon
下载PDF
Experimental Study of Effluent Salty Wastewater Treatment from a Solar Desalination Pond
9
作者 Ali Rasekhnia Farshad Farahbod 《Advances in Nanoparticles》 CAS 2023年第1期11-21,共11页
In this research, the quality of the wastewater discharged into the environment has been investigated. The effluent from solar desalination pond contains large amounts of TDS (3.68 grams per liter) and TH (6.50 grams ... In this research, the quality of the wastewater discharged into the environment has been investigated. The effluent from solar desalination pond contains large amounts of TDS (3.68 grams per liter) and TH (6.50 grams per liter). Since the use of filter is not economical in this case, three types of commercial coagulants such as aluminum sulfate, ferric chloride and ferric sulfide have been used in this study. The main parameters such as effectiveness of three inorganic coagulants, ammonium sulfate, ferric sulfate, and ferric chloride, which separately help to remove hardness, have been studied. According to the results, using laboratory test, 25/g of ferric sulfate as coagulant is best coagulant mass and the ratio of 4 to 3 for auxiliary coagulant (sodium carbonate and sodium hydroxide) to coagulant will be best ratio. Also, the mixing rate of 120 rpm in the first reactor will give the best mixing speed. These conditions will lead to 0.348 grams per liter of TDS, 0.345 grams per liter of TH and 0.195 grams per liter of calcium hardness and 300 micro Siemens electrical conductivity of the purified sample. 展开更多
关键词 Inorganic Coagulants Softening Process Total Dissolved Solids Total Hardness Removal Wastewater treatment
下载PDF
Life cycle assessment of high concentration organic wastewater treatment by catalytic wet air oxidation
10
作者 Yuxi Chai Yanan Zhang +6 位作者 Yannan Tan Zhiwei Li Huangzhao Wei Chenglin Sun Haibo Jin Zhao Mu Lei Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第4期80-88,共9页
There have been many studies on life cycle assessment in sewage treatment,but there are scarce few studies on the treatment of industrial wastewater in combination with advanced oxidation technology,especially in cata... There have been many studies on life cycle assessment in sewage treatment,but there are scarce few studies on the treatment of industrial wastewater in combination with advanced oxidation technology,especially in catalytic wet air oxidation(CWAO).There are no cases of using actual industrialized data onto life cycle assessment.This paper uses Simapro 9.0 software to establish a life cycle assessment model for the treatment of high-concentration organic wastewater by CWAO,and comprehensively explains the impact on the environment from three aspects:the construction phase,the operation phase and the demolition phase.In addition,sensitivity analysis and uncertainty analysis were performed.The results showed that the key factors affecting the environment were marine ecotoxicity,mineral resource consumption and global warming,the operation stage had the greatest impact on the environment,which was related to high power consumption during operation and emissions from the treatment process.Sensitivity analysis showed that electricity consumption has the greatest impact on abiotic depletion and freshwater aquatic ecotoxicity,and it also proved that global warming is mainly caused by pollutant emissions during operation phase.Monte Carlo simulations found slightly higher uncertainty for abiotic depletion and toxicity-related impact categories. 展开更多
关键词 Wastewater treatment High-concentration organic wastewater Catalytic wet air oxidation Life-cycle assessment
下载PDF
Mass-producible low-cost flexible electronic fabrics for azo dye wastewater treatment by electrocoagulation
11
作者 Chaoyi Yin Jingyuan Ma +2 位作者 Jian Qiu Ruifang Liu Long Ba 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第7期222-230,共9页
Electrocoagulation is progressively becoming an ecologically friendly water treatment method owing to its lack of secondary pollution,high active ingredient concentration,high treatment effectiveness,simple equipment,... Electrocoagulation is progressively becoming an ecologically friendly water treatment method owing to its lack of secondary pollution,high active ingredient concentration,high treatment effectiveness,simple equipment,and simplicity of automated control implementation.Herein,electrocoagulation is offered as a method for treating wastewater containing azo dyes using a revolutionary flexible electronic fabric that can be mass-producible at a reasonable price.A computer-controlled machine embroiders 316L stainless steel fiber(316L SSF)onto an insulating fabric to manufacture a flexible electronic device of cathode and anode with a monopolar arrangement on the fabric surface.Using methyl orange(MO)solution to simulate azo dye wastewater,the decolorization rate of 500 ml MO reached 99.25% under the conditions of 50 mg·L^(-1)initial mass concentration,120 min electrolysis time,15 mA·g^(-1)current density,1 cm electrode spacing,0.1 mol·L^(-1)NaCl,pH 7.6,200 r·min^(-1)rotational speed of the stirrer,and 22-25℃ room temperature.In addition,it is feasible to embroider flexible electronic fabrics with varied sizes and numbers of electrodes based on the amount of treated sewage to increase the degradation rate,which has significant practical application value. 展开更多
关键词 Flexible electronic fabric 316L Stainless steel fiber EMBROIDERY ELECTROCOAGULATION Wastewater treatment
下载PDF
Greenhouse gas reduction of co-benefit-type wastewater treatment system for fish-processing industry: A real-scale case study in Indonesia
12
作者 Yoshiteru Hamatani Takahiro Watari +3 位作者 Masashi Hatamoto Takashi Yamaguchi Tjandra Setiadi Toshihiko Konda 《Water Science and Engineering》 EI CAS CSCD 2023年第3期271-279,共9页
This study examined the application of co-benefit-type wastewater treatment technology in the fish-processing industry. Given that there was a dearth of information on fish-processing industrial wastewater in Indonesi... This study examined the application of co-benefit-type wastewater treatment technology in the fish-processing industry. Given that there was a dearth of information on fish-processing industrial wastewater in Indonesia, site surveys were conducted. For the entire fish-processing industry throughout the country, the dissemination rate of wastewater treatment facilities was less than 50%. Using a co-benefit approach, a real-scale swim-bed technology (SBT) and a system combining an anaerobic baffled reactor (ABR) with SBT (ABR–SBT) were installed in a fishmeal processing factory in Bali, Indonesia, and the wastewater system process performance was evaluated. In a business-as-usual scenario, the estimated chemical oxygen demand load and greenhouse gas (GHG) emissions from wastewater from the Indonesian fish-processing industry were 33 000 tons per year and 220 000 tons of equivalent CO_(2) per year, respectively. On the other hand, the GHG emissions in the co-benefit scenarios of the SBT system and ABR–SBT system were 98 149 and 26 720 tons per year, respectively. Therefore, introducing co-benefit-type wastewater treatment to Indonesia’s fish-processing industry would significantly reduce pollution loads and GHG emissions. 展开更多
关键词 Indonesian fish-processing industry Co-benefit wastewater treatment Greenhouse gas emission mitigation Anaerobic baffled reactor Swim-bed technology
下载PDF
Significance of Substrate Selection in the Efficiency of Wastewater Treatment in Constructed Wetlands (CWs)
13
作者 Snezana Didanovic Danijel Vrhovsek 《Journal of Water Resource and Protection》 2023年第9期424-441,共18页
Constructed wetlands (CWs) can achieve a high-quality wastewater treatment and a quality that meets the prescribed standard, defined by legislation on wastewater discharge. A limitation in the application of construct... Constructed wetlands (CWs) can achieve a high-quality wastewater treatment and a quality that meets the prescribed standard, defined by legislation on wastewater discharge. A limitation in the application of constructed wetlands (CWs) is the large area requirement, which limits their application. The subject matter of this research is to check the possibility of improving the efficiency of wastewater treatment and reducing the required area for constructed wetlands (CWs) by using an adequate substrate under the conditions found in Montenegro. In the described experiment, the constructed wetlands (CW) have a vertical flow system and play the role of a secondary wastewater treatment, receiving water from the existing WWTP in Podgorica after the primary treatment. These vertical flow systems reflect experience with the use of similar systems in Slovenija, Austria and Italy. Measurements to date show that the substrate plays an important role and that wastewater treatment efficacy varies significantly with respect to the type of substrate when used under the conditions available in Montenegro. 展开更多
关键词 Constructed Wetlands (CW) Reduced Area of Wetlands Substrates for Wetlands Vertical Flow System Primary treatment treatment Efficacy
下载PDF
Univariate imputation method for recovering missing data in wastewater treatment process
14
作者 Honggui Han Meiting Sun +2 位作者 Huayun Han Xiaolong Wu Junfei Qiao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第1期201-210,共10页
High-quality data play a paramount role in monitoring,control,and prediction of wastewater treatment process(WWTP)and can effectively ensure the efficient and stable operation of system.Missing values seriously degrad... High-quality data play a paramount role in monitoring,control,and prediction of wastewater treatment process(WWTP)and can effectively ensure the efficient and stable operation of system.Missing values seriously degrade the accuracy,reliability and completeness of the data quality due to network collapses,connection errors and data transformation failures.In these cases,it is infeasible to recover missing data depending on the correlation with other variables.To tackle this issue,a univariate imputation method(UIM)is proposed for WWTP integrating decomposition method and imputation algorithms.First,the seasonal-trend decomposition based on loess method is utilized to decompose the original time series into the seasonal,trend and remainder components to deal with the nonstationary characteristics of WWTP data.Second,the support vector regression is used to approximate the nonlinearity of the trend and remainder components respectively to provide estimates of its missing values.A self-similarity decomposition is conducted to fill the seasonal component based on its periodic pattern.Third,all the imputed results are merged to obtain the imputation result.Finally,six time series of WWTP are used to evaluate the imputation performance of the proposed UIM by comparing with existing seven methods based on two indicators.The experimental results illustrate that the proposed UIM is effective for WWTP time series under different missing ratios.Therefore,the proposed UIM is a promising method to impute WWTP time series. 展开更多
关键词 Univariate SELF-SIMILARITY Waste water ALGORITHM INTEGRATION
下载PDF
Chicken Eggshell as an Innovative Bioflocculant in Harvesting Biofloc for Aquaculture Wastewater Treatment
15
作者 Hajjar Hartini Wan Jusoh Nor Azman Kasan +4 位作者 Hidayah Manan Nurfarahana Mohd Nasir Fareza Hanis Mohd Yunos Sofiah Hamzah Ahmad Jusoh 《Journal of Renewable Materials》 SCIE EI 2023年第5期2321-2332,共12页
Implementation of biofloc technology(BFT)system in aquaculture industry shows high productivity,low feed conversion ratio,and an optimum culture environment.This study was divided into two phases.The first phase invol... Implementation of biofloc technology(BFT)system in aquaculture industry shows high productivity,low feed conversion ratio,and an optimum culture environment.This study was divided into two phases.The first phase involved maintaining the water quality using the optimum carbon-to-nitrogen ratio by manipulating pH in culture water.The second phase examined the performance of harvesting biofloc(remaining phytoplankton and suspended solids in the system)using chicken eggshell powder(CESP).This study showed that pH 7 to 8 were the best biofloc performance with high removal percentage of ammonia(>99%)with a remaining ammonia concentration of 0.016 mg L^(−1)and 0.018 mg L^(−1),respectively.The second phase of this study was performed to determine the optimal formulation and conditions of using CESP as a bio-flocculant in harvesting excess biofloc.The use of eggshell showed a higher harvesting efficiency of more than 80%under the following treatment conditions:0.25 g L^(−1)of eggshell dosage;with rapid and slow mixing rates of 150 and 30 rpm,respectively;30 min of settling time;settling velocity of 0.39 mm s^(−1)and pH of 6 to 7.Therefore,the results indicated that biofloc would be the best green technology approach for sustainable aquaculture wastewater and the CESP is an organic matrix that environmental-friendly bio-coagulant for biofloc harvesting. 展开更多
关键词 Chicken eggshell AQUACULTURE biofloc COAGULANT water quality HARVESTING
下载PDF
An internal circulation iron-carbon micro-electrolysis reactor for aniline wastewater treatment:Parameter optimization,degradation pathways and mechanism
16
作者 Yanhe Han Han Xu +4 位作者 Lei Zhang Xuejiao Ma Yang Man Zhimin Su Jing Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第11期96-107,共12页
Aniline is a vital industrial raw material.However,highly-toxic aniline wastewater usually deteriorated effluent quality,posed a threat to human health and ecosystem safety.Therefore,this study reported a novel intern... Aniline is a vital industrial raw material.However,highly-toxic aniline wastewater usually deteriorated effluent quality,posed a threat to human health and ecosystem safety.Therefore,this study reported a novel internal circulation iron-carbon micro-electrolysis(ICE)reactor to treat aniline wastewater.The effects of reaction time,pH,aeration rate and iron-carbon(Fe/C)ratio on the removal rate of aniline and the chemical oxygen demand were investigated using single-factor experiments.This process exhibited high aniline degradation performance of approximately 99.86% under optimal operating conditions(reaction time=20 min,pH=3,aeration rate=0.5 m3·h^(-1),and Fe/C=1:2).Based on the experimental results,the response surface method was applied to optimize the aniline removal rate.The Box–Behnken method was used to obtain the interaction effects of three main factors.The result showed that the reaction time had a dominant effect on the removal rate of aniline.The highest aniline removal rate was obtained at pH of 2,aeration rate of 0.5 m^(3)·h^(-1)and reaction time of 30 min.Under optional experimental conditions,the aniline content of effluent was reduced to 3 mg·L^(-1)and the removal rate was as high as 98.24%,within the 95% confidence interval(97.84%-99.32%)of the predicted values.The solution was treated and the reaction intermediates were identified by high-performance liquid chromatography,ultraviolet-visible spectroscopy,Fourier-transform infrared spectroscopy,gas chromatography-mass spectrometry,and ion chromatography.The main intermediates were phenol,benzoquinone,and carboxylic acid.These were used to propose the potential mechanism of aniline degradation in the ICE reactor.The results obtained in this study provide optimized conditions for the treatment of industrial wastewater containing aniline and can strengthen the understanding of the degradation mechanism of iron-carbon micro-electrolysis. 展开更多
关键词 ANILINE Iron-carbon micro-electrolysis Circulating fluidized bed Waste water DEGRADATION
下载PDF
Produced-water treatment: Application and research of combined fiber coalescence technique in offshore oilfield
17
作者 Pin-Yi Dai Yi-Qian Liu +2 位作者 Hao Lu Yu-Dong Li Qiang Yang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期569-576,共8页
When the process of extraction of oil from an offshore oilfield enters the advanced stages,the water content in the extracted fluid can be above 90%.The water quality is complex with many types of pollutants and highl... When the process of extraction of oil from an offshore oilfield enters the advanced stages,the water content in the extracted fluid can be above 90%.The water quality is complex with many types of pollutants and highly emulsified water.Therefore,a key consideration in the production process of offshore oilfields is the efficient and economical treatment of the oil-containing produced water to make it suitable for discharge and recover oil pollutants.In this study,we developed a hydrophilic and hydrophobic combined fiber coalescence separator with composite fiber shapes using fiber induction and X/Uweaving.The separator is designed based on experimental observations of the mechanism of structure coalescence in the physical oil removal method.A pilot test was performed on an oil exploration platform in the Bohai Sea.At the designed flow rate,the separator reduced the total concentration of petroleum in the produced water from 2000 to 3000 mg/L to below 60 mg/L,with an average oil removal efficiency of 98.24%.Furthermore,it effectively reduced the number of organic compounds present in the water from 120 to 17 and removed 70% of the SS.The test results show that the proposed device can be used fr produced-water treatment on offshore platforms. 展开更多
关键词 Combined fiber coalescence Production water Oil-water separation X/U weaving
下载PDF
3D inner-outer asymmetric sponge for enormous-volume emulsion wastewater treatment based on a new“demulsification-transport”mechanism
18
作者 Ruixiang Qu Shuaiheng Zhao +5 位作者 Na Liu Xiangyu Li Huajun Zhai Ya'nan Liu Yen Wei Lin Feng 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第5期1398-1408,共11页
Although oily wastewater treatment realized by superwetting materials has attracted heightened attention in recent years,how to treat enormous-volume emulsion wastewater is still a tough problem,which is ascribed to t... Although oily wastewater treatment realized by superwetting materials has attracted heightened attention in recent years,how to treat enormous-volume emulsion wastewater is still a tough problem,which is ascribed to the emulsion accumulation.Herein,to address this problem,a material is presented by subtly integrating chemical demulsification and 3D inner-outer asymmetric wettability to a sponge substrate,and thus wettability gradient-driven oil directional transport for achieving unprecedented enormous-volume emulsion wastewater treatment is realized based on a“demulsification-transport”mechanism.The maximum treatment volume realized by the sponge is as large as 3 L(2.08×10^(4) L per cubic meter of the sponge)in one cycle,which is about 100 times of the reported materials.Besides,owing to the large pore size of the sponge,9000 L m^(2)h^(-1)(LMH)separation flux and 99.5%separation efficiency are realized simultaneously,which overcomes the trade-off dilemma.Such a 3D inner-outer asymmetric sponge displaying unprecedented advantage in the treatment volume can promote the development of the oily wastewater treatment field,as well as expand the application prospects of superwetting materials,especially in continuous water treatment. 展开更多
关键词 Enormous-volume emulsion treatment Inner-outer asymmetric wettability Demulsification-transport mechanism High separation efficiency
下载PDF
Solar-Driven Water Treatment: New Technologies, Challenges, and Futures
19
作者 Djamel Ghernaout Sara Irki +1 位作者 Noureddine Elboughdiri Badia Ghernaout 《Green and Sustainable Chemistry》 CAS 2023年第2期110-152,共43页
In this review, the new solar water treatment technologies, including solar water desalination in two direct and indirect methods, are comprehensively presented. Recent advances and applications of five major solar de... In this review, the new solar water treatment technologies, including solar water desalination in two direct and indirect methods, are comprehensively presented. Recent advances and applications of five major solar desalination technologies include solar-powered humidification–dehumidification, multi-stage flash desalination, multi-effect desalination, RO, and solar stills. Each technology’s productivity, energy consumption, and water production costs are presented. Also, common methods of solar water disinfection have been reviewed as one of the common and low-cost methods of water treatment, especially in areas with no access to drinking water. However, although desalination technologies have many social, economic, and public health benefits, they are energy-intensive and negatively affect the environment. In addition, the disposal of brine from the desalination processes is one of the most challenging and costly issues. In this regard, the environmental effects of desalination technologies are presented and discussed. Among direct solar water desalination technologies, solar still technology is a low-cost, low-tech, and low-investment method suitable for remote areas, especially in developing countries with low financial support and access to skilled workers. Indirect solar-driven water desalination technologies, including thermal and membrane technologies, are more reliable and technically more mature. Recently, RO technology has received particular attention thanks to its lower energy demand, lower cost, and available solutions to increase membrane durability. Disposal of brines can account for much of the water cost and potentially negatively affect the environment. Therefore, in addition to efforts to improve the efficiency and reduce the cost of solar technologies and water treatment processes, future research studies should consider developing new solutions to this issue. 展开更多
关键词 Renewable Energy (RE) Solar-Driven Desalination Solar water Disinfection (SODIS) BRINE Greenhouse Gases (GHGs) Reverse Osmosis (RO)
下载PDF
Application of Whole Membrane Water Treatment Technology in Environmental Protection
20
作者 Cuiyan Wang 《Journal of World Architecture》 2020年第5期7-9,共3页
In the current social development of our country,environmental protection has become a key content,and water treatment process is a key step to achieve environmental protection.This paper analyzes the application of w... In the current social development of our country,environmental protection has become a key content,and water treatment process is a key step to achieve environmental protection.This paper analyzes the application of whole membrane water treatment technology in environmental protection.It is hoped that this analysis can be helpful for the rational application of the whole membrane water treatment technology and the improvement of environmental protection quality. 展开更多
关键词 Environmental protection water treatment process Whole membrane water treatment technology TECHNOLOGY
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部