Ridge-furrow rainwater harvesting (RFRH) planting pattern can lessen the effect of water deficits throughout all crop growth stages, but water shortage would remain unavoidable during some stages of crop growth in a...Ridge-furrow rainwater harvesting (RFRH) planting pattern can lessen the effect of water deficits throughout all crop growth stages, but water shortage would remain unavoidable during some stages of crop growth in arid and semiarid areas. Supplemental irrigation would still be needed to achieve a higher production. Field experiments were conducted for two growing seasons (2012-2013 and 2013-2014)to determine an appropriate amount of supplemental irrigation to be applied to winter oilseed rape at the stem-elongation stage with RFRH planting pattern. Four treatments, including supplemental irrigation amount of 0 (I1), 60 mm (I2) and 120 mm (I3) with RFRH planting pattern and a control (CK) irrigated with 120 mm with flat planting pattern, were set up to evaluate the effects of supplemental irrigation on aboveground dry matter (ADM), nitrogen nutrition index (NNI), radiation use efficiency (RUE), water use efficiency (WUE), and seed yield and oil content of the oilseed rape. Results showed that supplemental irrigation improved NNI, RUE, seed yield and oil content, and WUE. However, the NNI, RUE, seed yield and oil content, and WUE did not increase significantly or even showed a downward trend with excessive irrigation. Seed yield was the highest in 13 for both growing seasons. Seed yield and WUE in 13 averaged 3235 kg ha^-1 and 8.85 kg ha^-1 mm-1, respectively. The highest WUE was occurred in 12 for both growing seasons. Seed yield and WUE in 12 averaged 3089 kg ha^-1 and 9.63 kg ha^-1 mm^-1, respectively. Compared to 13, 12 used 60 mm less irrigation amount, had an 8.9% higher WUE, but only 4.5 and 0.4% lower seed yield and oil content, respectively. 12 saved water without substantially sacrificing yield or oil content, so it is recommended as an appropriate cultivation and irrigation schedule for winter oilseed rape at the stem-elongation stage.展开更多
Six-year old apple trees were selected for field experiment.The objective of this study was to obtain the reasonable arrangement of surge-root irrigation emitters in apple orchards.There were three factors:the buried ...Six-year old apple trees were selected for field experiment.The objective of this study was to obtain the reasonable arrangement of surge-root irrigation emitters in apple orchards.There were three factors:the buried depth H(25,40,55 cm),the horizontal distance L(30,40,60 cm)between the emitters and the trunk of the experimental tree,and the number of the irrigation emitters N(1,2,4).The effect of the arrangement of surge-root irrigation emitters on the growth,yield and irrigation water use efficiency(IWUE)of apple trees were studied in Northern Shaanxi where the irrigation quota takes 60%-75%of the field water capacity.The results showed that the arrangement of emitters for surge-root irrigation had a significant effect on apple tree yield and IWUE,especially,the yield and IWUE reached 28388.17 kg/hm2 and 16.83 kg/m3 in treatment T3,respectively.At the same L and N levels(T1,T2,and T3),the yield and IWUE in treatment T3 were the highest,and the yields in treatments T1 and T2 were decreased by 26.22%and 31.48%,while IWUE is reduced by14.02%and 18.12%compared with T3,respectively.At the same H and N levels(T3,T4,and T5),the yield and IWUE of apple trees were decreased with increasing L level.Especially,when L was 30 cm(T3),the yield and IWUE were the highest.The same L and H levels(T3,T6,and T7)could promote the growth of apple trees when N was 2(T3).Compared with treatment T3,it was found that the increment of new shoots was decreased by 8.07%-18.71%,and the fruit diameter was decreased by 5.41%-9.11%.Therefore,two emitters should be arranged symmetrically on both sides of an apple tree,each was buried at a 40 cm depth and 30 cm away from the trunk of the tree to effectively improve the yield and IWUE of the apple tree in mountainous areas in Northern Shaanxi.展开更多
Water stress effects on seed yield and water use efficiency of three indeterminate guar (Cyamopsis tetragonoloba L. Taub.) lines (L12, L18 and L33) were investigated in the experimental farm of the Faculty of Agricult...Water stress effects on seed yield and water use efficiency of three indeterminate guar (Cyamopsis tetragonoloba L. Taub.) lines (L12, L18 and L33) were investigated in the experimental farm of the Faculty of Agriculture, University of Khartoum for two seasons (2005 and 2006). The guar lines were subjected to water stress induced by withholding irrigation for three weeks. Three water stress treatments were imposed 35, 50 and 65 days after sowing (DAS), and a control treatment irrigated every two weeks. The treatments were arranged in a split-plot design with three replications;with water regime treatments assigned to the main plots and guar lines to the subplots. Data were recorded on seed yield (t.ha–1), number of pods per plant, 1000- seed weight (g), harvest index (HI) and water use efficiency at harvest. The results indicated that exposure of several cultivars of guar to water stress at the three stages of growth didn’t induce any significant effect on number of pods per plant, 1000-seed weight, seed yield and water use efficiency (WUE). On the other hand there was significant reduction in harvest index as a result of imposition of water stress at 35 and 50 DAS. It was also evident that plants re-watered after the stress recovered and had the same values as the control treatment.展开更多
The objective of this study was to obtain the water-saving and efficient production mode of Arabica coffee. The effects of three drip irrigation modes,conventional drip irrigation( CDI),alternate drip irrigation( ADI)...The objective of this study was to obtain the water-saving and efficient production mode of Arabica coffee. The effects of three drip irrigation modes,conventional drip irrigation( CDI),alternate drip irrigation( ADI) and fixed drip irrigation( FDI) on growth,photosynthetic characteristics,biomass accumulation and irrigation water use efficiency of Arabica coffee were investigated under three nitrogen levels,high nitrogen( NH),middle nitrogen( NM) and low nitrogen( NL). The results show that there was a significant Logistic curve between the plant height,the stem diameter of Arabica coffee and growth days. Compared with CDI,ADI had no significant effects on leaf net photosynthetic rate,stomatal conductance,instantaneous water use efficiency and biomass accumulation above ground of Arabica coffee,while FDI decreased significantly,ADI and FDI increased irrigation water use efficiency by 50. 59% and 32. 85%,respectively. Compared with NH,with the reduction of N application rate,net photosynthetic rate,stomatal conductance,biomass accumulation above ground and irrigation water use efficiency decreased by 6. 81%-12. 30%,13. 70%-22. 69%,9. 61%-16. 67% and 9. 78%-15. 64%,respectively. Compared with CDINH,ADINHdecreased net photosynthesis rate and the stomatal conductance not significantly,other treatments decreased by 9. 16%-19. 22%,14. 49%-32. 91%,and decreased biomass accumulation above ground by 8. 26%-27. 34% except ADINH,and increased irrigation water use efficiency by 16. 46%-60. 95% except CDINMand CDINL. Therefore,alternate drip irrigation under high N level( ADINH) is the best water and nitrogen coupling mode of young Arabica coffee tree for water efficiency.展开更多
In order to investigate the effect of acid rain on photosynthetic characteristics of spring wheat,spring wheat at the jointing stage was sprayed with simulated acid rain at different pH levels of 1.5,2.5,3.5,4.5 and 5...In order to investigate the effect of acid rain on photosynthetic characteristics of spring wheat,spring wheat at the jointing stage was sprayed with simulated acid rain at different pH levels of 1.5,2.5,3.5,4.5 and 5.6,and then,the photosynthetic parameters of spring wheat leaf was monitored.The results indicated that the pH value of simulated acid rain was positively and very significantly correlated with the net photosynthetic rate,stomata conductance,transpiration rate,water use efficiency and the chlorophyll relative content,whereas very significantly and negatively correlated with intercellular CO2 concentration.Due to acid rain,the net photosynthetic rate,stomata conductance,transpiration rate and the chlorophyll relative content decreased by 4.08%-67.04%,17.44%-58.44%,12.08%-48.08% and 12.16%-37.23% respectively,while intercellular CO2 concentration increased by 9.01%-14.29%.After simulated treatment with acid rain,the net photosynthetic rate had high significant positive correlation with stomata conductance,transpiration rate,water use efficiency,and the chlorophyll relative content,but high significant negative correlation with intercellular CO2 concentration.At the same time,transpiration rate was observed to be very significantly and positively correlated to stomata conductance and chlorophyll relative content,being significantly and positively correlated with water use efficiency,and very significantly and negatively correlated with intercellular CO2 concentration.In a word,the influence of simulated acid rain on photosynthetic characteristics of spring wheat leaf became more and more obvious with the increase of hydrogen ion concentration.展开更多
This article discusses approaches to simultaneously increase grain yield and resource use efficiency in rice.Breeding nitrogen efficient cultivars without sacrificing rice yield potential,improving grain fill in later...This article discusses approaches to simultaneously increase grain yield and resource use efficiency in rice.Breeding nitrogen efficient cultivars without sacrificing rice yield potential,improving grain fill in laterflowering inferior spikelets and enhancing harvest index are three important approaches to achieving the dual goal of high grain yield and high resource use efficiency.Deeper root distribution and higher leaf photosynthetic N use efficiency at lower N rates could be used as selection criteria to develop N-efficient cultivars.Enhancing sink activity through increasing sugar-spikelet ratio at the heading time and enhancing the conversion efficiency from sucrose to starch though increasing the ratio of abscisic acid to ethylene in grains during grain fill could effectively improve grain fill in inferior spikelets.Several practices,such as post-anthesis controlled soil drying,an alternate wetting and moderate soil drying regime during the whole growing season,and non-flooded straw mulching cultivation,could substantially increase grain yield and water use efficiency,mainly via enhanced remobilization of stored carbon from vegetative tissues to grains and improved harvest index.Further research is needed to understand synergistic interaction between water and N on crop and soil and the mechanism underlying high resource use efficiency in high-yielding rice.展开更多
The crop production in the district of Kasaragod in Kerala State(India)is characterized by low input-low yield concept and rain-fed agriculture.A field study was conducted in Western Ghat region of the district to dev...The crop production in the district of Kasaragod in Kerala State(India)is characterized by low input-low yield concept and rain-fed agriculture.A field study was conducted in Western Ghat region of the district to develop a suitable rainwater harvesting system adoptable to hilly terrains and to test its efficacy for improving the use efficiency of the harvested water by its multiple uses.The cost-benefit analysis of the water harvesting system was also carried out to find out its affordability to farmers.The water harvesting system has been developed by integrating three components:(i)improving the productivity of coconut and component crops in the cropping units(ii)developing multiple water use systems,and(iii)the conjunctive use of the harvested water along with other surface and groundwater resources.Based on the estimated annual costs and returns,the Benefit-Cost ratio was found to be 1.69 and all other financial viability criteria(IRR and NPV)were also found favourable for investment on a lined water harvesting tank integrated with a micro-irrigation system and fish farming.The study suggested that the rainwater harvesting could be implemented as a viable alternative to conventional water supply or on-farm irrigation projects considering the fact that any land anywhere can be used to harvest rainwater.Further,the water use efficiency can be improved through effective harvesting and subsequent multiple uses of stored water.展开更多
The fertigation technique with raised bed planting for transplanted boro(winter,irrigated)rice production is a research focus nowadays.A field experiment compared two cultivation methods:the fertigation technique with...The fertigation technique with raised bed planting for transplanted boro(winter,irrigated)rice production is a research focus nowadays.A field experiment compared two cultivation methods:the fertigation technique within raised bed planting on boro rice,and fertilizer broadcasting in the conventional planting method.Compared to conventional fertilizer broadcasting,results showed that the new fertigation technique in raised bed planting increased grain yield of transplanted boro rice by up to 17.04%.It yielded a greater number of panicles per square meter,a greater number of grains per panicle,higher 1000-grains weight,and better plant growth attributes.Sterility percentage and weed infestation were lower.Thirty six percent of irrigation water and time for application could be saved.Water use efficiency for grain and biomass production was higher.The agronomic efficiency of nitrogen(N)fertilizer was significantly higher.This study concluded that fertigation in raised bed planting for transplanted boro rice is a new approach with higher yield and higher fertilizer and water use efficiency than the existing agronomic practice in Bangladesh.展开更多
Field irrigation and drainage regulation and fertilization application could affect water utilization and pollution transportation in a paddy field.In this study,representative rice-producing areas of Zhejiang Provinc...Field irrigation and drainage regulation and fertilization application could affect water utilization and pollution transportation in a paddy field.In this study,representative rice-producing areas of Zhejiang Province in southern China were selected to study the effects of different field water level control(conventional irrigation and drainage W0,controlled irrigation and drainage W1 and W2)and different fertilization methods(2 times of fertilization F2 and three times of fertilization F3)on water irrigation quantity and consumption of rice,rice growth,water utilization,and pollution reduction.Results showed that field water level control had a great effect on irrigation quota in growing period rather than that in soaking period,and irrigation quota for W0 was 37.0%-71.7%higher than that for W1 and W2 in the whole growth period of rice.Although the upper limit of rain storage was greatly increased by W1 and W2,on the contrary,the yield under W1 and W2 was 0.4%-2.1%higher than that under W0.Water consumption,water leakage,and evapotranspiration were 16.63%-34.4%,39.97%-60.8%,and 9.40%-31.53%lower under W1 and W2 than those under W0,respectively,while it showed no significant changes under W1 and W2.Rainfall use rate and WUEI(water use efficiency of irrigation)under W1 and W2 had been significantly improved by 8.20%-129.58%and 31.58%-201.61%compared to W0.The contribution of nitrogen and phosphorus loss from surface water accounted for 90%and the total pollution load of total nitrogen(TN),NO_(3)^(-)-N,NH_(4)^(+)-N and chemical oxygen demand(COD)were 20.0%-63.4%,21.8%-66.3%,21.5%-63.8%,and 21.4%-46.5%lower for W1 and W2 than that for W0,respectively.Meanwhile,compared to F2,dispersed fertilization(F3)was beneficial to increase the yield and decrease pollutant load.Additionally,the path of IRA→NH_(4)^(+)-N→COD and IRA→WCA→WUE_(I) presented partial remediation effect,and the effect size was 23.6%and 38.1%,respectively,the path of IRA→WUE_(I)→WUE_(ET) presented a full remediation effect,and the path of IRA→WCA→WUE_(ET) presented suppression effect.展开更多
基金supported by the Special Fund for Agro-scientific Research in the Public Interest,China(201503105 and 201503125)the National High-Tech R&D Program of China(863 Program,2011AA100504)
文摘Ridge-furrow rainwater harvesting (RFRH) planting pattern can lessen the effect of water deficits throughout all crop growth stages, but water shortage would remain unavoidable during some stages of crop growth in arid and semiarid areas. Supplemental irrigation would still be needed to achieve a higher production. Field experiments were conducted for two growing seasons (2012-2013 and 2013-2014)to determine an appropriate amount of supplemental irrigation to be applied to winter oilseed rape at the stem-elongation stage with RFRH planting pattern. Four treatments, including supplemental irrigation amount of 0 (I1), 60 mm (I2) and 120 mm (I3) with RFRH planting pattern and a control (CK) irrigated with 120 mm with flat planting pattern, were set up to evaluate the effects of supplemental irrigation on aboveground dry matter (ADM), nitrogen nutrition index (NNI), radiation use efficiency (RUE), water use efficiency (WUE), and seed yield and oil content of the oilseed rape. Results showed that supplemental irrigation improved NNI, RUE, seed yield and oil content, and WUE. However, the NNI, RUE, seed yield and oil content, and WUE did not increase significantly or even showed a downward trend with excessive irrigation. Seed yield was the highest in 13 for both growing seasons. Seed yield and WUE in 13 averaged 3235 kg ha^-1 and 8.85 kg ha^-1 mm-1, respectively. The highest WUE was occurred in 12 for both growing seasons. Seed yield and WUE in 12 averaged 3089 kg ha^-1 and 9.63 kg ha^-1 mm^-1, respectively. Compared to 13, 12 used 60 mm less irrigation amount, had an 8.9% higher WUE, but only 4.5 and 0.4% lower seed yield and oil content, respectively. 12 saved water without substantially sacrificing yield or oil content, so it is recommended as an appropriate cultivation and irrigation schedule for winter oilseed rape at the stem-elongation stage.
基金Supporting founds:National Key R&D Program(2016YFC0400204)Natural Science Foundation of China(51479161,51279157,51779205)。
文摘Six-year old apple trees were selected for field experiment.The objective of this study was to obtain the reasonable arrangement of surge-root irrigation emitters in apple orchards.There were three factors:the buried depth H(25,40,55 cm),the horizontal distance L(30,40,60 cm)between the emitters and the trunk of the experimental tree,and the number of the irrigation emitters N(1,2,4).The effect of the arrangement of surge-root irrigation emitters on the growth,yield and irrigation water use efficiency(IWUE)of apple trees were studied in Northern Shaanxi where the irrigation quota takes 60%-75%of the field water capacity.The results showed that the arrangement of emitters for surge-root irrigation had a significant effect on apple tree yield and IWUE,especially,the yield and IWUE reached 28388.17 kg/hm2 and 16.83 kg/m3 in treatment T3,respectively.At the same L and N levels(T1,T2,and T3),the yield and IWUE in treatment T3 were the highest,and the yields in treatments T1 and T2 were decreased by 26.22%and 31.48%,while IWUE is reduced by14.02%and 18.12%compared with T3,respectively.At the same H and N levels(T3,T4,and T5),the yield and IWUE of apple trees were decreased with increasing L level.Especially,when L was 30 cm(T3),the yield and IWUE were the highest.The same L and H levels(T3,T6,and T7)could promote the growth of apple trees when N was 2(T3).Compared with treatment T3,it was found that the increment of new shoots was decreased by 8.07%-18.71%,and the fruit diameter was decreased by 5.41%-9.11%.Therefore,two emitters should be arranged symmetrically on both sides of an apple tree,each was buried at a 40 cm depth and 30 cm away from the trunk of the tree to effectively improve the yield and IWUE of the apple tree in mountainous areas in Northern Shaanxi.
文摘Water stress effects on seed yield and water use efficiency of three indeterminate guar (Cyamopsis tetragonoloba L. Taub.) lines (L12, L18 and L33) were investigated in the experimental farm of the Faculty of Agriculture, University of Khartoum for two seasons (2005 and 2006). The guar lines were subjected to water stress induced by withholding irrigation for three weeks. Three water stress treatments were imposed 35, 50 and 65 days after sowing (DAS), and a control treatment irrigated every two weeks. The treatments were arranged in a split-plot design with three replications;with water regime treatments assigned to the main plots and guar lines to the subplots. Data were recorded on seed yield (t.ha–1), number of pods per plant, 1000- seed weight (g), harvest index (HI) and water use efficiency at harvest. The results indicated that exposure of several cultivars of guar to water stress at the three stages of growth didn’t induce any significant effect on number of pods per plant, 1000-seed weight, seed yield and water use efficiency (WUE). On the other hand there was significant reduction in harvest index as a result of imposition of water stress at 35 and 50 DAS. It was also evident that plants re-watered after the stress recovered and had the same values as the control treatment.
基金National Natural Science Foundation of China(51109102,51469010,51769010)the basic research project of Yunnan Province(2014FB130)key project of education department in Yunnan Province(2011Z035)
文摘The objective of this study was to obtain the water-saving and efficient production mode of Arabica coffee. The effects of three drip irrigation modes,conventional drip irrigation( CDI),alternate drip irrigation( ADI) and fixed drip irrigation( FDI) on growth,photosynthetic characteristics,biomass accumulation and irrigation water use efficiency of Arabica coffee were investigated under three nitrogen levels,high nitrogen( NH),middle nitrogen( NM) and low nitrogen( NL). The results show that there was a significant Logistic curve between the plant height,the stem diameter of Arabica coffee and growth days. Compared with CDI,ADI had no significant effects on leaf net photosynthetic rate,stomatal conductance,instantaneous water use efficiency and biomass accumulation above ground of Arabica coffee,while FDI decreased significantly,ADI and FDI increased irrigation water use efficiency by 50. 59% and 32. 85%,respectively. Compared with NH,with the reduction of N application rate,net photosynthetic rate,stomatal conductance,biomass accumulation above ground and irrigation water use efficiency decreased by 6. 81%-12. 30%,13. 70%-22. 69%,9. 61%-16. 67% and 9. 78%-15. 64%,respectively. Compared with CDINH,ADINHdecreased net photosynthesis rate and the stomatal conductance not significantly,other treatments decreased by 9. 16%-19. 22%,14. 49%-32. 91%,and decreased biomass accumulation above ground by 8. 26%-27. 34% except ADINH,and increased irrigation water use efficiency by 16. 46%-60. 95% except CDINMand CDINL. Therefore,alternate drip irrigation under high N level( ADINH) is the best water and nitrogen coupling mode of young Arabica coffee tree for water efficiency.
基金Supported by Scientific Research Special Fund for Public Welfare Industry (Meteorology) (GY-HY200806021)Drought Fund Project of Lanzhou Arid Meteorology Institute,China Meteorological Administration (IAM200921)
文摘In order to investigate the effect of acid rain on photosynthetic characteristics of spring wheat,spring wheat at the jointing stage was sprayed with simulated acid rain at different pH levels of 1.5,2.5,3.5,4.5 and 5.6,and then,the photosynthetic parameters of spring wheat leaf was monitored.The results indicated that the pH value of simulated acid rain was positively and very significantly correlated with the net photosynthetic rate,stomata conductance,transpiration rate,water use efficiency and the chlorophyll relative content,whereas very significantly and negatively correlated with intercellular CO2 concentration.Due to acid rain,the net photosynthetic rate,stomata conductance,transpiration rate and the chlorophyll relative content decreased by 4.08%-67.04%,17.44%-58.44%,12.08%-48.08% and 12.16%-37.23% respectively,while intercellular CO2 concentration increased by 9.01%-14.29%.After simulated treatment with acid rain,the net photosynthetic rate had high significant positive correlation with stomata conductance,transpiration rate,water use efficiency,and the chlorophyll relative content,but high significant negative correlation with intercellular CO2 concentration.At the same time,transpiration rate was observed to be very significantly and positively correlated to stomata conductance and chlorophyll relative content,being significantly and positively correlated with water use efficiency,and very significantly and negatively correlated with intercellular CO2 concentration.In a word,the influence of simulated acid rain on photosynthetic characteristics of spring wheat leaf became more and more obvious with the increase of hydrogen ion concentration.
基金The National Natural Science Foundation of China(3146114301531271641,31471438,91317307)+1 种基金the National Key Technology Support Program of China(2011BAD16B14,2012BAD04B08,2014AA10A605)the Priority Academic Program Development of Jiangsu Higher Education Institutions,Jiangsu Creation Program for Post-graduation Students(KYZZ_0364)are thanked for their financial support.
文摘This article discusses approaches to simultaneously increase grain yield and resource use efficiency in rice.Breeding nitrogen efficient cultivars without sacrificing rice yield potential,improving grain fill in laterflowering inferior spikelets and enhancing harvest index are three important approaches to achieving the dual goal of high grain yield and high resource use efficiency.Deeper root distribution and higher leaf photosynthetic N use efficiency at lower N rates could be used as selection criteria to develop N-efficient cultivars.Enhancing sink activity through increasing sugar-spikelet ratio at the heading time and enhancing the conversion efficiency from sucrose to starch though increasing the ratio of abscisic acid to ethylene in grains during grain fill could effectively improve grain fill in inferior spikelets.Several practices,such as post-anthesis controlled soil drying,an alternate wetting and moderate soil drying regime during the whole growing season,and non-flooded straw mulching cultivation,could substantially increase grain yield and water use efficiency,mainly via enhanced remobilization of stored carbon from vegetative tissues to grains and improved harvest index.Further research is needed to understand synergistic interaction between water and N on crop and soil and the mechanism underlying high resource use efficiency in high-yielding rice.
文摘The crop production in the district of Kasaragod in Kerala State(India)is characterized by low input-low yield concept and rain-fed agriculture.A field study was conducted in Western Ghat region of the district to develop a suitable rainwater harvesting system adoptable to hilly terrains and to test its efficacy for improving the use efficiency of the harvested water by its multiple uses.The cost-benefit analysis of the water harvesting system was also carried out to find out its affordability to farmers.The water harvesting system has been developed by integrating three components:(i)improving the productivity of coconut and component crops in the cropping units(ii)developing multiple water use systems,and(iii)the conjunctive use of the harvested water along with other surface and groundwater resources.Based on the estimated annual costs and returns,the Benefit-Cost ratio was found to be 1.69 and all other financial viability criteria(IRR and NPV)were also found favourable for investment on a lined water harvesting tank integrated with a micro-irrigation system and fish farming.The study suggested that the rainwater harvesting could be implemented as a viable alternative to conventional water supply or on-farm irrigation projects considering the fact that any land anywhere can be used to harvest rainwater.Further,the water use efficiency can be improved through effective harvesting and subsequent multiple uses of stored water.
文摘The fertigation technique with raised bed planting for transplanted boro(winter,irrigated)rice production is a research focus nowadays.A field experiment compared two cultivation methods:the fertigation technique within raised bed planting on boro rice,and fertilizer broadcasting in the conventional planting method.Compared to conventional fertilizer broadcasting,results showed that the new fertigation technique in raised bed planting increased grain yield of transplanted boro rice by up to 17.04%.It yielded a greater number of panicles per square meter,a greater number of grains per panicle,higher 1000-grains weight,and better plant growth attributes.Sterility percentage and weed infestation were lower.Thirty six percent of irrigation water and time for application could be saved.Water use efficiency for grain and biomass production was higher.The agronomic efficiency of nitrogen(N)fertilizer was significantly higher.This study concluded that fertigation in raised bed planting for transplanted boro rice is a new approach with higher yield and higher fertilizer and water use efficiency than the existing agronomic practice in Bangladesh.
基金the National Key Research and Development Program(Grant No.2019YFC0408803)the National Natural Science Foundation of China(Grant No.52009044)the Basic Public Welfare Research Project of Zhejiang Province(Grant No.LGN20E090001).
文摘Field irrigation and drainage regulation and fertilization application could affect water utilization and pollution transportation in a paddy field.In this study,representative rice-producing areas of Zhejiang Province in southern China were selected to study the effects of different field water level control(conventional irrigation and drainage W0,controlled irrigation and drainage W1 and W2)and different fertilization methods(2 times of fertilization F2 and three times of fertilization F3)on water irrigation quantity and consumption of rice,rice growth,water utilization,and pollution reduction.Results showed that field water level control had a great effect on irrigation quota in growing period rather than that in soaking period,and irrigation quota for W0 was 37.0%-71.7%higher than that for W1 and W2 in the whole growth period of rice.Although the upper limit of rain storage was greatly increased by W1 and W2,on the contrary,the yield under W1 and W2 was 0.4%-2.1%higher than that under W0.Water consumption,water leakage,and evapotranspiration were 16.63%-34.4%,39.97%-60.8%,and 9.40%-31.53%lower under W1 and W2 than those under W0,respectively,while it showed no significant changes under W1 and W2.Rainfall use rate and WUEI(water use efficiency of irrigation)under W1 and W2 had been significantly improved by 8.20%-129.58%and 31.58%-201.61%compared to W0.The contribution of nitrogen and phosphorus loss from surface water accounted for 90%and the total pollution load of total nitrogen(TN),NO_(3)^(-)-N,NH_(4)^(+)-N and chemical oxygen demand(COD)were 20.0%-63.4%,21.8%-66.3%,21.5%-63.8%,and 21.4%-46.5%lower for W1 and W2 than that for W0,respectively.Meanwhile,compared to F2,dispersed fertilization(F3)was beneficial to increase the yield and decrease pollutant load.Additionally,the path of IRA→NH_(4)^(+)-N→COD and IRA→WCA→WUE_(I) presented partial remediation effect,and the effect size was 23.6%and 38.1%,respectively,the path of IRA→WUE_(I)→WUE_(ET) presented a full remediation effect,and the path of IRA→WCA→WUE_(ET) presented suppression effect.