A series of hyperbranched poly(amine-ester)polyols were synthesized by the polycondensation of N,N-diethylol-3-amine-methylpropionate(prepared by Michael addition reaction of methyl acrylate with diethanolamine)as an ...A series of hyperbranched poly(amine-ester)polyols were synthesized by the polycondensation of N,N-diethylol-3-amine-methylpropionate(prepared by Michael addition reaction of methyl acrylate with diethanolamine)as an AB2-type monomer with trimethylol propane as the core moiety,proceeding in one-step procedure in the melt with p-toluenesulfonic acid as catalyst.The obtained monomer and polymers were characterized by FTIR and 1H-NMR spectroscopy.The solubility and surface activity in aqueous solution of the polymers were also examined.The gas permeability,water vapor permeability,and moisture absorption of microfiber synthetic leather treated by hyperbranched polymer were studied.The optimum conditions were that the dosage of dye and hyperbranched polymer was 5% and 10%,respectively.The water vapor permeability and moisture absorption of microfiber synthetic leather reached to 0.525 4 mg/(10 cm2·24 h)and 0.046 7 mg/(10 cm2·24 h).Compared with blank samples,they increased by 15% and 35%,respectively.However,the dosage of hyperbranched polymer has little influence on gas permeability of microfiber synthetic leather.SEM results show that the fiber of microfiber synthetic leather treated by hyperbranched polymer is incompact.展开更多
The water vapor permeability (WVP) of films is important when developing pharmaceutical applications. Films are frequently used as coatings, and as such directly influence the quality of the medicine. The optimizati...The water vapor permeability (WVP) of films is important when developing pharmaceutical applications. Films are frequently used as coatings, and as such directly influence the quality of the medicine. The optimization of processing conditions for sodium alginate films was investigated using response surface methodology. Single-factor tests and Box-Behnken experimental design were employed. WVP was selected as the response variable, and the operating parameters for the single-factor tests were sodium alginate concentration, carboxymethyl cellulose (CMC) concentration and CaClz solution immersion time. The coefficient of determination (R2) was 0.97, indicating statistical significance. A minimal WVP of 0.389 8 g-mm/(m^2.h.kPa) was achieved under the optimum conditions. These were found to be a sodium alginate concentration, CMC concentration and CaCl2 solution immersion time at 8.04%, 0.13%, and 12 min, respectively. This provides a reference for potential applications in manufacturing film-coated hard capsule shells.展开更多
Water vapor permeability of building materials is a crucial parameter for analysing and optimizing the hygrothermal performance of building envelopes and built environments.Its measurement is accurate but time-consumi...Water vapor permeability of building materials is a crucial parameter for analysing and optimizing the hygrothermal performance of building envelopes and built environments.Its measurement is accurate but time-consuming,while data mining methods have the potential to predict water vapor permeability efficiently.In this study,six data mining methods—support vector regression(SVR),decision tree regression(DT),random forest regression(RF),K-nearest neighbor(KNN),multi-layer perceptron(MLP),and adaptive boosting regression(AdaBoost)—were compared to predict the water vapor permeability of cement-based materials.A total of 143 datasets of material properties were collected to build prediction models,and five materials were experimentally determined for model validation.The results show that RF has excellent generalization,stability,and precision.AdaBoost has great generalization and precision,only slightly inferior to the former,and its stability is excellent.DT has good precision and acceptable generalization,but its stability is poor.SVR and KNN have superior stability,but their generalization and precision are inadequate.MLP lacks generalization,and its stability and precision are unacceptable.In short,RF has the best comprehensive performance,demonstrated by a limited prediction deviation of 26.3%from the experimental results,better than AdaBoost(38.0%)and DT(38.3%)and far better than other remaining methods.It is also found that data mining methods provide better predictions when cement-based materials’water vapor permeability is high.展开更多
It is found that there is a linear relationship between log P-w, and the parameter term V-f/0.5 E(coh) [1+(delta(w) - delta(p))(2)/delta(p)(2), from the water permeability (P-w) data of 21 polymers covering 4 orders o...It is found that there is a linear relationship between log P-w, and the parameter term V-f/0.5 E(coh) [1+(delta(w) - delta(p))(2)/delta(p)(2), from the water permeability (P-w) data of 21 polymers covering 4 orders of magnitude. This correlation may be useful in choosing membrane materials for dehumidification of gases.展开更多
Films were made from the wheat glutens treated with 5%,10%,15%,20%,25% and 30%(wt% of gluten) of sodium dodecyl sulfite (SDS) in order to improve the properties of the films. Glycerol was used as a plasticizer.An addi...Films were made from the wheat glutens treated with 5%,10%,15%,20%,25% and 30%(wt% of gluten) of sodium dodecyl sulfite (SDS) in order to improve the properties of the films. Glycerol was used as a plasticizer.An addition of SDS in wheat glutens prior to forming films significantly increased the elongation at break(E) (P<0.05) and reduced notably the water vapor permeability(WVP) (P<0.05). In contrast,a decrease in the tensile strength(TS) of the films from gluten containing-SDS was found.Moreover,a significant decrease in P_(O_2) and P_(CO_2) of films from gluten treated with SDS was noticed. Although SDS-treated gluten film was slightly more yellow and darker than control one, it was not visually detrimental. It is indicated that the treatment with SDS prior to forming films greatly enhances the mechanical properties of wheat gluten films.The obivous improvement in water vapor permeability and extensibility of gluten films means that the use of SDS is a potential choice for improving properties of gluten films. The edible film was used to preserve tomatoes. The experimental results show that the shelf life of tomatoes coated with the edible film is extended, and the nutritional quality is kept well.展开更多
Murals in Mogao Grottoes consist of three parts:support layer,earthen plasters and paint layer.The earthen plasters play a key role in the preservation of murals.It is a mixture of Dengban soil,sand,and plant fiber.Tw...Murals in Mogao Grottoes consist of three parts:support layer,earthen plasters and paint layer.The earthen plasters play a key role in the preservation of murals.It is a mixture of Dengban soil,sand,and plant fiber.Two different natural fibers,hemp fiber and cotton fiber,were reinforced to earthen plasters in the same percentage to evaluate the influence on hygrothermal performance.The two types of earthen plasters were studied:one containing hemp fiber in the fine plaster(HFP)and the other containing cotton fiber in the fine plaster(CFP).Specific heat capacity,dry thermal conductivity,water vapor permeability,and sorption isotherms were investigated.The results showed that the difference between two natural fibers has much more impact on the hygric properties(water vapor permeability and sorption isotherms)of earthen plasters than on their thermal performance(specific heat capacity and dry thermal conductivity).The CFP with higher density has higher thermal conductivity than the HFP with lower density.But no significant differences of specific heat capacity were observed.Compared with HFP,CFP used in murals can reduce the rate of water transfer and prevent salt from transferring water to the mural surface.The overall findings highlight that all these features of CFP are beneficial to the long-term preservation of murals.The study of the earthen plasters in Mogao Grottoes is of general significance,and the measured properties can be used to obtain coupled heat and moisture analysis of the earthen plasters and to dissect the degradation mechanism of murals.展开更多
基金National High Technology Research and Development Program of China(863program)(No.200803Z309)Optional Item of Shaanxi University of Science and Technology,China(No.ZX08-06)National Natural Science Foundation of China(No.20876090)
文摘A series of hyperbranched poly(amine-ester)polyols were synthesized by the polycondensation of N,N-diethylol-3-amine-methylpropionate(prepared by Michael addition reaction of methyl acrylate with diethanolamine)as an AB2-type monomer with trimethylol propane as the core moiety,proceeding in one-step procedure in the melt with p-toluenesulfonic acid as catalyst.The obtained monomer and polymers were characterized by FTIR and 1H-NMR spectroscopy.The solubility and surface activity in aqueous solution of the polymers were also examined.The gas permeability,water vapor permeability,and moisture absorption of microfiber synthetic leather treated by hyperbranched polymer were studied.The optimum conditions were that the dosage of dye and hyperbranched polymer was 5% and 10%,respectively.The water vapor permeability and moisture absorption of microfiber synthetic leather reached to 0.525 4 mg/(10 cm2·24 h)and 0.046 7 mg/(10 cm2·24 h).Compared with blank samples,they increased by 15% and 35%,respectively.However,the dosage of hyperbranched polymer has little influence on gas permeability of microfiber synthetic leather.SEM results show that the fiber of microfiber synthetic leather treated by hyperbranched polymer is incompact.
基金Supported by the Program for Transformation of Scientific and Technological Achievements of Jiangsu Province,China(No.BA2009088)
文摘The water vapor permeability (WVP) of films is important when developing pharmaceutical applications. Films are frequently used as coatings, and as such directly influence the quality of the medicine. The optimization of processing conditions for sodium alginate films was investigated using response surface methodology. Single-factor tests and Box-Behnken experimental design were employed. WVP was selected as the response variable, and the operating parameters for the single-factor tests were sodium alginate concentration, carboxymethyl cellulose (CMC) concentration and CaClz solution immersion time. The coefficient of determination (R2) was 0.97, indicating statistical significance. A minimal WVP of 0.389 8 g-mm/(m^2.h.kPa) was achieved under the optimum conditions. These were found to be a sodium alginate concentration, CMC concentration and CaCl2 solution immersion time at 8.04%, 0.13%, and 12 min, respectively. This provides a reference for potential applications in manufacturing film-coated hard capsule shells.
基金supported by the National Natural Science Foundation of China (No.52178065).
文摘Water vapor permeability of building materials is a crucial parameter for analysing and optimizing the hygrothermal performance of building envelopes and built environments.Its measurement is accurate but time-consuming,while data mining methods have the potential to predict water vapor permeability efficiently.In this study,six data mining methods—support vector regression(SVR),decision tree regression(DT),random forest regression(RF),K-nearest neighbor(KNN),multi-layer perceptron(MLP),and adaptive boosting regression(AdaBoost)—were compared to predict the water vapor permeability of cement-based materials.A total of 143 datasets of material properties were collected to build prediction models,and five materials were experimentally determined for model validation.The results show that RF has excellent generalization,stability,and precision.AdaBoost has great generalization and precision,only slightly inferior to the former,and its stability is excellent.DT has good precision and acceptable generalization,but its stability is poor.SVR and KNN have superior stability,but their generalization and precision are inadequate.MLP lacks generalization,and its stability and precision are unacceptable.In short,RF has the best comprehensive performance,demonstrated by a limited prediction deviation of 26.3%from the experimental results,better than AdaBoost(38.0%)and DT(38.3%)and far better than other remaining methods.It is also found that data mining methods provide better predictions when cement-based materials’water vapor permeability is high.
基金This work was supported by the National Natural Science Foundation of China
文摘It is found that there is a linear relationship between log P-w, and the parameter term V-f/0.5 E(coh) [1+(delta(w) - delta(p))(2)/delta(p)(2), from the water permeability (P-w) data of 21 polymers covering 4 orders of magnitude. This correlation may be useful in choosing membrane materials for dehumidification of gases.
文摘Films were made from the wheat glutens treated with 5%,10%,15%,20%,25% and 30%(wt% of gluten) of sodium dodecyl sulfite (SDS) in order to improve the properties of the films. Glycerol was used as a plasticizer.An addition of SDS in wheat glutens prior to forming films significantly increased the elongation at break(E) (P<0.05) and reduced notably the water vapor permeability(WVP) (P<0.05). In contrast,a decrease in the tensile strength(TS) of the films from gluten containing-SDS was found.Moreover,a significant decrease in P_(O_2) and P_(CO_2) of films from gluten treated with SDS was noticed. Although SDS-treated gluten film was slightly more yellow and darker than control one, it was not visually detrimental. It is indicated that the treatment with SDS prior to forming films greatly enhances the mechanical properties of wheat gluten films.The obivous improvement in water vapor permeability and extensibility of gluten films means that the use of SDS is a potential choice for improving properties of gluten films. The edible film was used to preserve tomatoes. The experimental results show that the shelf life of tomatoes coated with the edible film is extended, and the nutritional quality is kept well.
基金This project was supported by the National Natural Science Foundation of China(Projects No.51378412)China State Administration of Cultural Heritage(Project No.20110308).
文摘Murals in Mogao Grottoes consist of three parts:support layer,earthen plasters and paint layer.The earthen plasters play a key role in the preservation of murals.It is a mixture of Dengban soil,sand,and plant fiber.Two different natural fibers,hemp fiber and cotton fiber,were reinforced to earthen plasters in the same percentage to evaluate the influence on hygrothermal performance.The two types of earthen plasters were studied:one containing hemp fiber in the fine plaster(HFP)and the other containing cotton fiber in the fine plaster(CFP).Specific heat capacity,dry thermal conductivity,water vapor permeability,and sorption isotherms were investigated.The results showed that the difference between two natural fibers has much more impact on the hygric properties(water vapor permeability and sorption isotherms)of earthen plasters than on their thermal performance(specific heat capacity and dry thermal conductivity).The CFP with higher density has higher thermal conductivity than the HFP with lower density.But no significant differences of specific heat capacity were observed.Compared with HFP,CFP used in murals can reduce the rate of water transfer and prevent salt from transferring water to the mural surface.The overall findings highlight that all these features of CFP are beneficial to the long-term preservation of murals.The study of the earthen plasters in Mogao Grottoes is of general significance,and the measured properties can be used to obtain coupled heat and moisture analysis of the earthen plasters and to dissect the degradation mechanism of murals.