This paper provides an asymptotic expansion for the mean integrated squared error (MISE) of nonlinear wavelet-based mean regression function estimators with long memory data. This MISE expansion, when the underlying...This paper provides an asymptotic expansion for the mean integrated squared error (MISE) of nonlinear wavelet-based mean regression function estimators with long memory data. This MISE expansion, when the underlying mean regression function is only piecewise smooth, is the same as analogous expansion for the kernel estimators.However, for the kernel estimators, this MISE expansion generally fails if the additional smoothness assumption is absent.展开更多
This letter proposes an efficient wavelet-based Fine Granularity Scalable (FGS)coding scheme, where the base layer is encoded with a newly designed wavelet-based coder, and the enhancement layer is encoded with Progre...This letter proposes an efficient wavelet-based Fine Granularity Scalable (FGS)coding scheme, where the base layer is encoded with a newly designed wavelet-based coder, and the enhancement layer is encoded with Progressive Fine Granularity Scalable (PFGS) coding.This algorithm involves multi-frame motion compensation, rate-distortion optimizing strategy with Lagrangian cost function and context-based adaptive arithmetic coding. In order to improve efficiency of the enhancement layer coding, an improved motion estimation scheme that uses both information from the base layer and the enhancement layer is also proposed in this letter. The wavelet-based coder significantly improves the coding efficiency of the base layer compared with MPEG-4 ASP (Advanced Simple Profile) and H.26L TML9. The PFGS coding is a significant improvement over MPEG-4 FGS coding at the enhancement layer. Experiments show that single layer coding efficiency gain of the proposed scheme is about 2.0-3.0dB and 0.3-1.0dB higher than that of MPEG-4 ASP and H.26L TML9, respectively. The overall coding efficiency gain of the proposed scheme is about 4.0-5.0dB higher than that of MPEG-4 FGS.展开更多
Two kinds of wavelet-based elements have been constructed to analyze the stability of plates and shells and the static displacement of 3D elastic problems.The scaling functions of B-spline wavelet on the interval(BSW...Two kinds of wavelet-based elements have been constructed to analyze the stability of plates and shells and the static displacement of 3D elastic problems.The scaling functions of B-spline wavelet on the interval(BSWI) are employed as interpolating functions to construct plate and shell elements for stability analysis and 3D elastic elements for static mechanics analysis.The main advantages of BSWI scaling functions are the accuracy of B-spline functions approximation and various wavelet-based elements for structural analysis.The performances of the present elements are demonstrated by typical numerical examples.展开更多
Beam halo-chaos in high-current accelerators has become a key concerned issue because it can cause excessive radioactivity from the accelerators therefore significantly limits their applications in industry,medicine,a...Beam halo-chaos in high-current accelerators has become a key concerned issue because it can cause excessive radioactivity from the accelerators therefore significantly limits their applications in industry,medicine,and national defense.Some general engineering methods for chaos control have been developed in recent years,but they generally are unsuccessful for beam halo-chaos suppression due to many technical constraints.Beam halo-chaos is essentially a spatiotemporal chaotic motion within a high power proton accelerator.In this paper,some efficient nonlinear control methods,including wavelet function feedback control as a special nonlinear control method,are proposed for controlling beam halo-chaos under five kinds of the initial proton beam distributions (i.e.,Kapchinsky-Vladimirsky,full Gauss,3-sigma Gauss,water-bag,and parabola distributions) respectively.Particles-in-cell simulations show that after control of beam halo-chaos,the beam halo strength factor is reduced to zero,and other statistical physical quantities of beam halo-chaos are doubly reduced.The methods we developed is very effective for suppression of proton beam halo-chaos in a periodic focusing channel of accelerator.Some potential application of the beam halo-chaos control in experiments is finally pointed out.展开更多
The nonlinear wave forces on vertical cylinders induced by freak wave trains were experimentally investigated. A series of freak wave trains with different wave steepness were modeled in a wave flume. The correspondin...The nonlinear wave forces on vertical cylinders induced by freak wave trains were experimentally investigated. A series of freak wave trains with different wave steepness were modeled in a wave flume. The corresponding wave forces on vertical cylinders of different diameters were measured. The experimental wave forces were also compared with the predicted results based on Morison formula. Particular attentions were paid to the effects of wave steepness on the dimensionless peak forces, asymmetry characteristics of the impact forces and high-frequency force components. Wavelet-based analysis methods were employed in revealing the local energy structures and quadratic phase coupling in the freak wave forces.展开更多
The problem of seismic danger estimate in Japan after Tohoku mega-earthquake 11 March of 2011 is considered. The estimates are based on processing low-frequency seismic noise wave-forms from broadband network F-net. A...The problem of seismic danger estimate in Japan after Tohoku mega-earthquake 11 March of 2011 is considered. The estimates are based on processing low-frequency seismic noise wave-forms from broadband network F-net. A new method of dynamic estimate of seismic danger is used for this problem. The method is based on calculating multi-fractal properties and minimum entropy of squared orthogonal wavelet coefficients for seismic noise. The analysis of the data using notion of “spots of seismic danger” shows that the seismic danger in Japan remains at high level after 2011. 03. 11 within north-east part of Philippine plate—at the region of Nankai Though which traditionally is regarded as the place of strongest earthquakes. It is well known that estimate of time moment of future shock is the most difficult problem in earthquake prediction. In this paper we try to find some peculiarities of the seismic noise data which could extract future danger time interval by analogy with the behavior before Tohoku earthquake. Two possible precursors of this type were found. They are the results of estimates within 1-year moving time window: based on correlation between 2 mean multi-fractal parameters of the noise and based on cluster analysis of annual clouds of 4 mean noise parameters. Both peculiarities of the noise data extract time interval 2013-2014 as the danger.展开更多
A wavelet-based boundary element method is employed to calculate the band structures of two-dimensional phononic crystals,which are composed of square or triangular lattices with scatterers of arbitrary cross sections...A wavelet-based boundary element method is employed to calculate the band structures of two-dimensional phononic crystals,which are composed of square or triangular lattices with scatterers of arbitrary cross sections.With the aid of structural periodicity,the boundary integral equations of both the scatterer and the matrix are discretized in a unit cell.To make the curve boundary compatible,the second-order scaling functions of the B-spline wavelet on the interval are used to approximate the geometric boundaries,while the boundary variables are interpolated by scaling functions of arbitrary order.For any given angular frequency,an effective technique is given to yield matrix values related to the boundary shape.Thereafter,combining the periodic boundary conditions and interface conditions,linear eigenvalue equations related to the Bloch wave vector are developed.Typical numerical examples illustrate the superior performance of the proposed method by comparing with the conventional BEM.展开更多
The BER performance for an optimal circular 16-QAM constellation is theoretically derived and applied in wavelet based OFDM system in additive white Gaussian noise channel. Signal point constellations have been discus...The BER performance for an optimal circular 16-QAM constellation is theoretically derived and applied in wavelet based OFDM system in additive white Gaussian noise channel. Signal point constellations have been discussed in much literature. An optimal circular 16-QAM is developed. The calculation of the BER is based on the four types of the decision boundaries. Each decision boundary is determined based on the space distance d following the pdf Gaussian distribution with respect to the in-phase and quadrature components nI and nQ with the assumption that they are statistically independent to each other. The BER analysis for other circular M-ary QAM is also analyzed. The system is then applied to wavelet based OFDM. The wavelet transform is considered because it offers a better spectral containment feature compared to conventional OFDM using Fourier transform. The circular schemes are slightly better than the square schemes in most SNR values. All simulation results have met the theoretical calculations. When applying to wavelet based OFDM, the circular modulation scheme has also performed slightly less errors as compared to the square modulation scheme.展开更多
Orthogonal frequency division multiplexing (OFDM) is a special form of multi-carrier transmission that uses the policy of divide and rule. In this scheme, a large number of orthogonal, overlapping, narrow band sub-c...Orthogonal frequency division multiplexing (OFDM) is a special form of multi-carrier transmission that uses the policy of divide and rule. In this scheme, a large number of orthogonal, overlapping, narrow band sub-channels (subcarriers) are transmitted in parallel and divide the available transmission bandwidth. This techniqueis originally based on the Fast Fourier Transform of the information data. In order to improve the performance of the OFDM and overcome some limitations, an alternative OFDM approach based on the Wavelet Transform is proposed. In this paper, we study the performance of such systems in additive white Gaussian channel (AWGN). MATLAB simulations are realized and performance comparisons are presented.展开更多
It is generally accepted that nonlinear wave-wave interactions play an important role in harbor resonance. Nevertheless it is not clear how waves take part in those interactions. The aim of this paper is to investigat...It is generally accepted that nonlinear wave-wave interactions play an important role in harbor resonance. Nevertheless it is not clear how waves take part in those interactions. The aim of this paper is to investigate those processes for a rectangular harbor at transient phases. Long-period oscillations excited by bichromatic waves are simulated by the Boussinesq model. The simulations start from calm conditions for the purpose of studying the response process. The internal wavemaker stops working after the oscillations have reached a quasi-steady state, and it is used to simulate the damp process. In order to analyze temporary features of wave-wave interactions in different states, the wavelet-based bispectrum is employed. The influence of the short wave frequencies on long-period oscillations is investigated, and reasons are tried to be given from nonlinear triad interactions between different wave components and the interaction of short waves and the bay entrance. Finally, the response time and the damp time are estimated by a simple method.展开更多
文摘This paper provides an asymptotic expansion for the mean integrated squared error (MISE) of nonlinear wavelet-based mean regression function estimators with long memory data. This MISE expansion, when the underlying mean regression function is only piecewise smooth, is the same as analogous expansion for the kernel estimators.However, for the kernel estimators, this MISE expansion generally fails if the additional smoothness assumption is absent.
基金Supported partially by the National Natural Science Foundation of China(No.69973018)and Natural Science Foundation of Hubei Province(No.99J009)
文摘This letter proposes an efficient wavelet-based Fine Granularity Scalable (FGS)coding scheme, where the base layer is encoded with a newly designed wavelet-based coder, and the enhancement layer is encoded with Progressive Fine Granularity Scalable (PFGS) coding.This algorithm involves multi-frame motion compensation, rate-distortion optimizing strategy with Lagrangian cost function and context-based adaptive arithmetic coding. In order to improve efficiency of the enhancement layer coding, an improved motion estimation scheme that uses both information from the base layer and the enhancement layer is also proposed in this letter. The wavelet-based coder significantly improves the coding efficiency of the base layer compared with MPEG-4 ASP (Advanced Simple Profile) and H.26L TML9. The PFGS coding is a significant improvement over MPEG-4 FGS coding at the enhancement layer. Experiments show that single layer coding efficiency gain of the proposed scheme is about 2.0-3.0dB and 0.3-1.0dB higher than that of MPEG-4 ASP and H.26L TML9, respectively. The overall coding efficiency gain of the proposed scheme is about 4.0-5.0dB higher than that of MPEG-4 FGS.
基金supported by the National Natural Science Foundation of China (No. 50805028)the Key Project of Chinese Ministry of Education (No. 210170)+1 种基金Guangxi key Technologies R & D Program of China (Nos. 1099022-1 and 0900705 003)supported in part by the Excellent Talents in Guangxi Higher Education Institutions of China
文摘Two kinds of wavelet-based elements have been constructed to analyze the stability of plates and shells and the static displacement of 3D elastic problems.The scaling functions of B-spline wavelet on the interval(BSWI) are employed as interpolating functions to construct plate and shell elements for stability analysis and 3D elastic elements for static mechanics analysis.The main advantages of BSWI scaling functions are the accuracy of B-spline functions approximation and various wavelet-based elements for structural analysis.The performances of the present elements are demonstrated by typical numerical examples.
文摘Beam halo-chaos in high-current accelerators has become a key concerned issue because it can cause excessive radioactivity from the accelerators therefore significantly limits their applications in industry,medicine,and national defense.Some general engineering methods for chaos control have been developed in recent years,but they generally are unsuccessful for beam halo-chaos suppression due to many technical constraints.Beam halo-chaos is essentially a spatiotemporal chaotic motion within a high power proton accelerator.In this paper,some efficient nonlinear control methods,including wavelet function feedback control as a special nonlinear control method,are proposed for controlling beam halo-chaos under five kinds of the initial proton beam distributions (i.e.,Kapchinsky-Vladimirsky,full Gauss,3-sigma Gauss,water-bag,and parabola distributions) respectively.Particles-in-cell simulations show that after control of beam halo-chaos,the beam halo strength factor is reduced to zero,and other statistical physical quantities of beam halo-chaos are doubly reduced.The methods we developed is very effective for suppression of proton beam halo-chaos in a periodic focusing channel of accelerator.Some potential application of the beam halo-chaos control in experiments is finally pointed out.
基金financially supported by the National Natural Science Foundation of China(Grant No.51779141)the China Postdoctoral Science Foundation(Grant No.2018M630996)the State Key Laboratory of Ocean Engineering(Grant No.1710)
文摘The nonlinear wave forces on vertical cylinders induced by freak wave trains were experimentally investigated. A series of freak wave trains with different wave steepness were modeled in a wave flume. The corresponding wave forces on vertical cylinders of different diameters were measured. The experimental wave forces were also compared with the predicted results based on Morison formula. Particular attentions were paid to the effects of wave steepness on the dimensionless peak forces, asymmetry characteristics of the impact forces and high-frequency force components. Wavelet-based analysis methods were employed in revealing the local energy structures and quadratic phase coupling in the freak wave forces.
文摘The problem of seismic danger estimate in Japan after Tohoku mega-earthquake 11 March of 2011 is considered. The estimates are based on processing low-frequency seismic noise wave-forms from broadband network F-net. A new method of dynamic estimate of seismic danger is used for this problem. The method is based on calculating multi-fractal properties and minimum entropy of squared orthogonal wavelet coefficients for seismic noise. The analysis of the data using notion of “spots of seismic danger” shows that the seismic danger in Japan remains at high level after 2011. 03. 11 within north-east part of Philippine plate—at the region of Nankai Though which traditionally is regarded as the place of strongest earthquakes. It is well known that estimate of time moment of future shock is the most difficult problem in earthquake prediction. In this paper we try to find some peculiarities of the seismic noise data which could extract future danger time interval by analogy with the behavior before Tohoku earthquake. Two possible precursors of this type were found. They are the results of estimates within 1-year moving time window: based on correlation between 2 mean multi-fractal parameters of the noise and based on cluster analysis of annual clouds of 4 mean noise parameters. Both peculiarities of the noise data extract time interval 2013-2014 as the danger.
基金This work is supported by the National Natural Science Foundation of China(Nos.U1909217,U1709208)Zhejiang Special Support Program for High-level Personnel Recruitment of China(No.2018R52034).
文摘A wavelet-based boundary element method is employed to calculate the band structures of two-dimensional phononic crystals,which are composed of square or triangular lattices with scatterers of arbitrary cross sections.With the aid of structural periodicity,the boundary integral equations of both the scatterer and the matrix are discretized in a unit cell.To make the curve boundary compatible,the second-order scaling functions of the B-spline wavelet on the interval are used to approximate the geometric boundaries,while the boundary variables are interpolated by scaling functions of arbitrary order.For any given angular frequency,an effective technique is given to yield matrix values related to the boundary shape.Thereafter,combining the periodic boundary conditions and interface conditions,linear eigenvalue equations related to the Bloch wave vector are developed.Typical numerical examples illustrate the superior performance of the proposed method by comparing with the conventional BEM.
文摘The BER performance for an optimal circular 16-QAM constellation is theoretically derived and applied in wavelet based OFDM system in additive white Gaussian noise channel. Signal point constellations have been discussed in much literature. An optimal circular 16-QAM is developed. The calculation of the BER is based on the four types of the decision boundaries. Each decision boundary is determined based on the space distance d following the pdf Gaussian distribution with respect to the in-phase and quadrature components nI and nQ with the assumption that they are statistically independent to each other. The BER analysis for other circular M-ary QAM is also analyzed. The system is then applied to wavelet based OFDM. The wavelet transform is considered because it offers a better spectral containment feature compared to conventional OFDM using Fourier transform. The circular schemes are slightly better than the square schemes in most SNR values. All simulation results have met the theoretical calculations. When applying to wavelet based OFDM, the circular modulation scheme has also performed slightly less errors as compared to the square modulation scheme.
文摘Orthogonal frequency division multiplexing (OFDM) is a special form of multi-carrier transmission that uses the policy of divide and rule. In this scheme, a large number of orthogonal, overlapping, narrow band sub-channels (subcarriers) are transmitted in parallel and divide the available transmission bandwidth. This techniqueis originally based on the Fast Fourier Transform of the information data. In order to improve the performance of the OFDM and overcome some limitations, an alternative OFDM approach based on the Wavelet Transform is proposed. In this paper, we study the performance of such systems in additive white Gaussian channel (AWGN). MATLAB simulations are realized and performance comparisons are presented.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50679010 and 50921001)Program for New Century Excellent Talents in Universities of China (Grant No. NCET–04–0267)Program for Changjiang Scholars and Innovative Research Teams of Colleges and Universities of China (Grant No. IRT0420)
文摘It is generally accepted that nonlinear wave-wave interactions play an important role in harbor resonance. Nevertheless it is not clear how waves take part in those interactions. The aim of this paper is to investigate those processes for a rectangular harbor at transient phases. Long-period oscillations excited by bichromatic waves are simulated by the Boussinesq model. The simulations start from calm conditions for the purpose of studying the response process. The internal wavemaker stops working after the oscillations have reached a quasi-steady state, and it is used to simulate the damp process. In order to analyze temporary features of wave-wave interactions in different states, the wavelet-based bispectrum is employed. The influence of the short wave frequencies on long-period oscillations is investigated, and reasons are tried to be given from nonlinear triad interactions between different wave components and the interaction of short waves and the bay entrance. Finally, the response time and the damp time are estimated by a simple method.