The spherical plain bearing test bench is a necessary detecting equipment in the research process of self?lubricating spherical plain bearings. The varying environmental temperatures cause the thermal deformation of t...The spherical plain bearing test bench is a necessary detecting equipment in the research process of self?lubricating spherical plain bearings. The varying environmental temperatures cause the thermal deformation of the wear?depth detecting system of bearing test benches and then a ect the accuracy of the wear?depth detecting data. However, few researches about the spherical plain bearing test benches can be found with the implementation of the detect?ing error compensation. Based on the self?made modular spherical plain bearing test bench, two main causes of ther?mal errors, the friction heat of bearings and the environmental temperature variation, are analysed. The thermal errors caused by the friction heat of bearings are calculated, and the thermal deformation of the wear?depth detecting sys?tem caused by the varying environmental temperatures is detected. In view of the above results, the environmental temperature variation is the main cause of the two error factors. When the environmental temperatures rise is 10.3 °C, the thermal deformation is approximately 0.01 mm. In addition, the comprehensive compensating model of the thermal error of the wear?depth detecting system is built by multiple linear regression(MLR) and time series analysis. Compared with the detecting data of the thermal errors, the comprehensive compensating model has higher fitting precision, and the maximum residual is only 1 μm. A comprehensive compensating model of the thermal error of the wear?depth detecting system is proposed, which provides a theoretical basis for the improvement of the real?time wear?depth detecting precision of the spherical plain bearing test bench.展开更多
Aim Aiming at the position tracking control for valve controlled motor electrohydraulic proportional servo systems mainly driving the static load torque, the tracking performance was studied in the presence of the v...Aim Aiming at the position tracking control for valve controlled motor electrohydraulic proportional servo systems mainly driving the static load torque, the tracking performance was studied in the presence of the variable gain and deadzone. Methods On the basis of conventional composite control with the deadzone compensation method, a comprehensive control approach with the deadzone and self adjusting feedforward compensation was proposed. Results Experimental results showed that the good tracking performance was achieved for the sinusoidal and constant velocity position tracking under a wide variations of load torque. Conclusion The position tracking accuracy for valve controlled motor electrohydraulic proportional servo systems has been solved by using the comprehensive control approach with the deadzone and self adjusting feedforward compensation.展开更多
Automatic compensation of grinding wheel wear in dry grinding is accomplished by an image based online measurement method. A kind of PC-based charge-coupled device image recognition system is schemed out, which detect...Automatic compensation of grinding wheel wear in dry grinding is accomplished by an image based online measurement method. A kind of PC-based charge-coupled device image recognition system is schemed out, which detects the topography changes of the grinding wheel surface. Profile data, which corresponds to the wear and the topography, is measured by using a digital image processing method. The grinding wheel wear is evalualed by analyzing the position deviation of the grinding wheel edge. The online wear compensation is achieved according to the measure results. The precise detection and automatic compensation system is integrated into an open structure CNC curve grinding machine. A practical application is carried out to fulfil the precision curve grinding. The experimental results confirm the benefits of the proposed techniques, and the online detection accuracy is less than 5 um. The grinding machine provides higher precision according to the in-process grinding wheel error compensation.展开更多
Microstructured roll workpieces have been widely used as functional components in the precision industries. Current researches on quality control have focused on surface profile measurement of microstructured roll wor...Microstructured roll workpieces have been widely used as functional components in the precision industries. Current researches on quality control have focused on surface profile measurement of microstructured roll workpieces, and types of measurement systems and measurement methods have been developed. However, low measurement efficiency and low measurement accuracy caused by setting errors are the common disadvantages for surface profile measurement of microstructured roll workpieces. In order to shorten the measurement time and enhance the measurement accuracy, a method for self-calibration and compensation of setting errors is proposed for surface profile measurement of microstructured roll workpieces. A measurement system is constructed for the measurement, in which a precision spindle is employed to rotate the roll workpiece and an air-bearing displacement sensor with a micro-stylus probe is employed to scan the microstructured surface of the roll workpiece. The resolution of the displacement sensor is 0.14 nm and that of the rotary encoder of the spindle was 0.15r~. Geometrical and mathematical models are established for analyzing the influences of the setting errors of the roll workpiece and the displacement sensor with respect to the axis of the spindle, including the eccentric error of the roll workpiece, the offset error of the sensor axis and the zero point error of the sensor output. Measurement experiments are carded out on a roll workpiece on which periodic microstructures are a period of 133 i^m along the circumferential direction. Experimental results demonstrate the feasibility of the self-compensation method. The proposed method can be used to detect and compensate the setting errors without using any additional accurate artifact.展开更多
A test method based on the condition simulation and a friction and wear test machine featuring in oscillatory movement were set up for self-lubricating spherical plain bearings (SPB). In the machine the condition para...A test method based on the condition simulation and a friction and wear test machine featuring in oscillatory movement were set up for self-lubricating spherical plain bearings (SPB). In the machine the condition parameters such as load, angle and frequency of oscillation and number of test cycles can be properly controlled. The data relating to the tribological properties of the bearing, in terms of friction coefficient, linear wear amount, temperature near friction surface and applied load, can be monitored and recorded simultaneously during test process by a computerized measuring system of the machine. Efforts were made to improve the measurement technology of the friction coefficient in oscillating motion. In result, a well-designed bearing torque mechanism was developed, which could reveal the relation between the friction coefficient and the displacement of oscillating angle in any defined cycle while the curve of friction coefficient vs number of testing cycles was continuously plotted. The tribological properties and service life of four kinds of the bearings, i.e, the sampleⅠ-Ⅳ with different self-lubricating composite liners, including three kinds of polytetrafluoroethylene (PTFE) fiber weave/epoxy resin composite liners and a PTFE plastic/copper grid composite liner, were evaluated by testing, and the wear mechanisms of the liner materials were analyzed.展开更多
On a specially designed ball on disc type tribometer, both the friction coefficients and the self generated voltages (SGVs) for SUJ2/Al and SUJ2/Cu dry rubbing pairs were measured; and the correlation between SGV and ...On a specially designed ball on disc type tribometer, both the friction coefficients and the self generated voltages (SGVs) for SUJ2/Al and SUJ2/Cu dry rubbing pairs were measured; and the correlation between SGV and friction coefficient was ascertained during test. The relationship between the SGVs and the tribological characteristics shows that monitoring SGVs of rubbing pairs can be used as a new on line means for evaluating wear of metallic materials. Moreover, this method has an advantage over the electrical resistance method, which needs externally applied voltage and may introduce some influences on the surface states.展开更多
The friction reducing properties of sulfonated graphene as a lubricating additive were investigated using a four-ball machine tester with high carbon chromium bearing steels GCr15(SAE52100) friction pairs. The micro...The friction reducing properties of sulfonated graphene as a lubricating additive were investigated using a four-ball machine tester with high carbon chromium bearing steels GCr15(SAE52100) friction pairs. The microscopic morphology, elemental composition, and self-repairing properties were observed and analyzed by using scanning electronic microscopy(SEM), X-ray diffraction(XRD) and digital microscopy. The relationships among sulfonated graphene ethanol solution concentration, friction coefficient, and abrasion loss were revealed. It was found that the optimal concentration of ethanol solution with the addition of sulfonated graphene was 0.15g/m L and the coefficient of friction was only 0.105 under certain condition. Then the stable chemical properties and good anti-corrosion properties of the metal-graphene layer were further confirmed using salt spray corrosion test. In summary, sulfonated graphene can be used as a new kind of self repairing additive, and it has excellent wear-resistant and self-repairing performances.展开更多
We propose a novel lumped time-delay compensation scheme for all-optical analog-to-digital conversion based on soliton self-frequency shift and optical interconnection techniques. A linearly chirped fiber Bragg gratin...We propose a novel lumped time-delay compensation scheme for all-optical analog-to-digital conversion based on soliton self-frequency shift and optical interconnection techniques. A linearly chirped fiber Bragg grating is optimally designed and used to compensate for the entire time-delays of the quantized pulses precisely. Simulation results show that the compensated coding pulses are well synchronized with a time difference less than 3.3 ps, which can support a maximum sampling rate of 151.52 GSa/s. The proposed scheme can efficiently reduce the structure complexity and cost of all-optical analog-to-digital conversion compared to the previous schemes with multiple optical time-delay lines.展开更多
街道场景视频实例分割是无人驾驶技术研究中的关键问题之一,可为车辆在街道场景下的环境感知和路径规划提供决策依据.针对现有方法存在多纵横比锚框应用单一感受野采样导致边缘特征提取不充分以及高层特征金字塔空间细节位置信息匮乏的...街道场景视频实例分割是无人驾驶技术研究中的关键问题之一,可为车辆在街道场景下的环境感知和路径规划提供决策依据.针对现有方法存在多纵横比锚框应用单一感受野采样导致边缘特征提取不充分以及高层特征金字塔空间细节位置信息匮乏的问题,本文提出锚框校准和空间位置信息补偿视频实例分割(Anchor frame calibration and Spatial position information compensation for Video Instance Segmentation,AS-VIS)网络.首先,在预测头3个分支中添加锚框校准模块实现同锚框纵横比匹配的多类型感受野采样,解决目标边缘提取不充分问题.其次,设计多感受野下采样模块将各种感受野采样后的特征融合,解决下采样信息缺失问题.最后,应用多感受野下采样模块将特征金字塔低层目标区域激活特征映射嵌入到高层中实现空间位置信息补偿,解决高层特征空间细节位置信息匮乏问题.在Youtube-VIS标准库中提取街道场景视频数据集,其中包括训练集329个视频和验证集53个视频.实验结果与YolactEdge检测和分割精度指标定量对比表明,锚框校准平均精度分别提升8.63%和5.09%,空间位置信息补偿特征金字塔平均精度分别提升7.76%和4.75%,AS-VIS总体平均精度分别提升9.26%和6.46%.本文方法实现了街道场景视频序列实例级同步检测、跟踪与分割,为无人驾驶车辆环境感知提供有效的理论依据.展开更多
Being directed against two kinds of noise in optical fiber sensors,a simple and effective method of automatic compensation for optical fiber sensors is presented.Not only the unstability effect of light source,but als...Being directed against two kinds of noise in optical fiber sensors,a simple and effective method of automatic compensation for optical fiber sensors is presented.Not only the unstability effect of light source,but also zero drift of photoelectronic devices,can be eliminated or enormously restrained with the aid of this method.In another way,by using single-chip microcomputer,the optical fiber sensor system fabricated is connected to a computer network to realize an automatic compensation.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51405422)Hebei Provincial Natural Science Foundation of China(Grant No.E2015203113)Technological Innovation Fund of Aviation Industry of China(Grant No.2014E00468R)
文摘The spherical plain bearing test bench is a necessary detecting equipment in the research process of self?lubricating spherical plain bearings. The varying environmental temperatures cause the thermal deformation of the wear?depth detecting system of bearing test benches and then a ect the accuracy of the wear?depth detecting data. However, few researches about the spherical plain bearing test benches can be found with the implementation of the detect?ing error compensation. Based on the self?made modular spherical plain bearing test bench, two main causes of ther?mal errors, the friction heat of bearings and the environmental temperature variation, are analysed. The thermal errors caused by the friction heat of bearings are calculated, and the thermal deformation of the wear?depth detecting sys?tem caused by the varying environmental temperatures is detected. In view of the above results, the environmental temperature variation is the main cause of the two error factors. When the environmental temperatures rise is 10.3 °C, the thermal deformation is approximately 0.01 mm. In addition, the comprehensive compensating model of the thermal error of the wear?depth detecting system is built by multiple linear regression(MLR) and time series analysis. Compared with the detecting data of the thermal errors, the comprehensive compensating model has higher fitting precision, and the maximum residual is only 1 μm. A comprehensive compensating model of the thermal error of the wear?depth detecting system is proposed, which provides a theoretical basis for the improvement of the real?time wear?depth detecting precision of the spherical plain bearing test bench.
文摘Aim Aiming at the position tracking control for valve controlled motor electrohydraulic proportional servo systems mainly driving the static load torque, the tracking performance was studied in the presence of the variable gain and deadzone. Methods On the basis of conventional composite control with the deadzone compensation method, a comprehensive control approach with the deadzone and self adjusting feedforward compensation was proposed. Results Experimental results showed that the good tracking performance was achieved for the sinusoidal and constant velocity position tracking under a wide variations of load torque. Conclusion The position tracking accuracy for valve controlled motor electrohydraulic proportional servo systems has been solved by using the comprehensive control approach with the deadzone and self adjusting feedforward compensation.
基金This project is supported by Science and Technology Development Foundation of Shanghai Municipal Commission of Science and Technology, China (No.021111125).
文摘Automatic compensation of grinding wheel wear in dry grinding is accomplished by an image based online measurement method. A kind of PC-based charge-coupled device image recognition system is schemed out, which detects the topography changes of the grinding wheel surface. Profile data, which corresponds to the wear and the topography, is measured by using a digital image processing method. The grinding wheel wear is evalualed by analyzing the position deviation of the grinding wheel edge. The online wear compensation is achieved according to the measure results. The precise detection and automatic compensation system is integrated into an open structure CNC curve grinding machine. A practical application is carried out to fulfil the precision curve grinding. The experimental results confirm the benefits of the proposed techniques, and the online detection accuracy is less than 5 um. The grinding machine provides higher precision according to the in-process grinding wheel error compensation.
文摘Microstructured roll workpieces have been widely used as functional components in the precision industries. Current researches on quality control have focused on surface profile measurement of microstructured roll workpieces, and types of measurement systems and measurement methods have been developed. However, low measurement efficiency and low measurement accuracy caused by setting errors are the common disadvantages for surface profile measurement of microstructured roll workpieces. In order to shorten the measurement time and enhance the measurement accuracy, a method for self-calibration and compensation of setting errors is proposed for surface profile measurement of microstructured roll workpieces. A measurement system is constructed for the measurement, in which a precision spindle is employed to rotate the roll workpiece and an air-bearing displacement sensor with a micro-stylus probe is employed to scan the microstructured surface of the roll workpiece. The resolution of the displacement sensor is 0.14 nm and that of the rotary encoder of the spindle was 0.15r~. Geometrical and mathematical models are established for analyzing the influences of the setting errors of the roll workpiece and the displacement sensor with respect to the axis of the spindle, including the eccentric error of the roll workpiece, the offset error of the sensor axis and the zero point error of the sensor output. Measurement experiments are carded out on a roll workpiece on which periodic microstructures are a period of 133 i^m along the circumferential direction. Experimental results demonstrate the feasibility of the self-compensation method. The proposed method can be used to detect and compensate the setting errors without using any additional accurate artifact.
文摘A test method based on the condition simulation and a friction and wear test machine featuring in oscillatory movement were set up for self-lubricating spherical plain bearings (SPB). In the machine the condition parameters such as load, angle and frequency of oscillation and number of test cycles can be properly controlled. The data relating to the tribological properties of the bearing, in terms of friction coefficient, linear wear amount, temperature near friction surface and applied load, can be monitored and recorded simultaneously during test process by a computerized measuring system of the machine. Efforts were made to improve the measurement technology of the friction coefficient in oscillating motion. In result, a well-designed bearing torque mechanism was developed, which could reveal the relation between the friction coefficient and the displacement of oscillating angle in any defined cycle while the curve of friction coefficient vs number of testing cycles was continuously plotted. The tribological properties and service life of four kinds of the bearings, i.e, the sampleⅠ-Ⅳ with different self-lubricating composite liners, including three kinds of polytetrafluoroethylene (PTFE) fiber weave/epoxy resin composite liners and a PTFE plastic/copper grid composite liner, were evaluated by testing, and the wear mechanisms of the liner materials were analyzed.
文摘On a specially designed ball on disc type tribometer, both the friction coefficients and the self generated voltages (SGVs) for SUJ2/Al and SUJ2/Cu dry rubbing pairs were measured; and the correlation between SGV and friction coefficient was ascertained during test. The relationship between the SGVs and the tribological characteristics shows that monitoring SGVs of rubbing pairs can be used as a new on line means for evaluating wear of metallic materials. Moreover, this method has an advantage over the electrical resistance method, which needs externally applied voltage and may introduce some influences on the surface states.
基金Funded by the National Natural Science Foundation of China(Nos.51675230&51405195)
文摘The friction reducing properties of sulfonated graphene as a lubricating additive were investigated using a four-ball machine tester with high carbon chromium bearing steels GCr15(SAE52100) friction pairs. The microscopic morphology, elemental composition, and self-repairing properties were observed and analyzed by using scanning electronic microscopy(SEM), X-ray diffraction(XRD) and digital microscopy. The relationships among sulfonated graphene ethanol solution concentration, friction coefficient, and abrasion loss were revealed. It was found that the optimal concentration of ethanol solution with the addition of sulfonated graphene was 0.15g/m L and the coefficient of friction was only 0.105 under certain condition. Then the stable chemical properties and good anti-corrosion properties of the metal-graphene layer were further confirmed using salt spray corrosion test. In summary, sulfonated graphene can be used as a new kind of self repairing additive, and it has excellent wear-resistant and self-repairing performances.
基金Project supported by the National Basic Research Program,China(Grant Nos.2010CB327605 and 2010CB328300)the National High-Technology Research and Development Program of China(Grant No.2013AA031501)+7 种基金the National Natural Science Foundation of China(Grant No.61307109)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120005120021)the Fundamental Research Funds for the Central Universities,China(Grant No.2013RC1202)the Program for New Century Excellent Talents in University,China(Grant No.NECT-11-0596)the Beijing Nova Program,China(Grant No.2011066)the Fund of State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications) Chinathe China Postdoctoral Science Foundation(Grant No.2012M511826)the Postdoctoral Science Foundation of Guangdong Province,China(Grant No.244331)
文摘We propose a novel lumped time-delay compensation scheme for all-optical analog-to-digital conversion based on soliton self-frequency shift and optical interconnection techniques. A linearly chirped fiber Bragg grating is optimally designed and used to compensate for the entire time-delays of the quantized pulses precisely. Simulation results show that the compensated coding pulses are well synchronized with a time difference less than 3.3 ps, which can support a maximum sampling rate of 151.52 GSa/s. The proposed scheme can efficiently reduce the structure complexity and cost of all-optical analog-to-digital conversion compared to the previous schemes with multiple optical time-delay lines.
文摘街道场景视频实例分割是无人驾驶技术研究中的关键问题之一,可为车辆在街道场景下的环境感知和路径规划提供决策依据.针对现有方法存在多纵横比锚框应用单一感受野采样导致边缘特征提取不充分以及高层特征金字塔空间细节位置信息匮乏的问题,本文提出锚框校准和空间位置信息补偿视频实例分割(Anchor frame calibration and Spatial position information compensation for Video Instance Segmentation,AS-VIS)网络.首先,在预测头3个分支中添加锚框校准模块实现同锚框纵横比匹配的多类型感受野采样,解决目标边缘提取不充分问题.其次,设计多感受野下采样模块将各种感受野采样后的特征融合,解决下采样信息缺失问题.最后,应用多感受野下采样模块将特征金字塔低层目标区域激活特征映射嵌入到高层中实现空间位置信息补偿,解决高层特征空间细节位置信息匮乏问题.在Youtube-VIS标准库中提取街道场景视频数据集,其中包括训练集329个视频和验证集53个视频.实验结果与YolactEdge检测和分割精度指标定量对比表明,锚框校准平均精度分别提升8.63%和5.09%,空间位置信息补偿特征金字塔平均精度分别提升7.76%和4.75%,AS-VIS总体平均精度分别提升9.26%和6.46%.本文方法实现了街道场景视频序列实例级同步检测、跟踪与分割,为无人驾驶车辆环境感知提供有效的理论依据.
文摘Being directed against two kinds of noise in optical fiber sensors,a simple and effective method of automatic compensation for optical fiber sensors is presented.Not only the unstability effect of light source,but also zero drift of photoelectronic devices,can be eliminated or enormously restrained with the aid of this method.In another way,by using single-chip microcomputer,the optical fiber sensor system fabricated is connected to a computer network to realize an automatic compensation.