In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering comp...In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production.展开更多
A class of preconditioned iterative methods, i.e., preconditioned generalized accelerated overrelaxation (GAOR) methods, is proposed to solve linear systems based on a class of weighted linear least squares problems...A class of preconditioned iterative methods, i.e., preconditioned generalized accelerated overrelaxation (GAOR) methods, is proposed to solve linear systems based on a class of weighted linear least squares problems. The convergence and comparison results are obtained. The comparison results show that the convergence rate of the preconditioned iterative methods is better than that of the original methods. Furthermore, the effectiveness of the proposed methods is shown in the numerical experiment.展开更多
Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matri...Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matrix and filter parameters are difficult to be determined,which may result in filtering divergence.As to the problem that the accuracy of state estimation for nonlinear ballistic model strongly depends on its mathematical model,we improve the weighted least squares method(WLSM)with minimum model error principle.Invariant embedding method is adopted to solve the cost function including the model error.With the knowledge of measurement data and measurement error covariance matrix,we use gradient descent algorithm to determine the weighting matrix of model error.The uncertainty and linearization error of model are recursively estimated by the proposed method,thus achieving an online filtering estimation of the observations.Simulation results indicate that the proposed recursive estimation algorithm is insensitive to initial conditions and of good robustness.展开更多
A novel hybrid scheme for the maneuver detection and estimation of a noncooperative space target was proposed in this study.The optical measurements,together with the range and range rate measurements from the ground-...A novel hybrid scheme for the maneuver detection and estimation of a noncooperative space target was proposed in this study.The optical measurements,together with the range and range rate measurements from the ground-based radars,were used in the tracking scenarios.In many tracking scenarios,radar resources for non-cooperative targets are constrained,particularly for near-earth targets,where multiple objects can only be tracked by a single radar at a time.This limitation hinders the accurate estimation of noncooperative target maneuvers,and can at times result in target loss.Existing literature has addressed this issue to some extent through various maneuvering target-tracking methods.To address this problem,a hybrid maneuver detection and estimation method that combines the input detection and estimation extended kalman filter and the weighted nonlinear least squares method is presented.Simulation results demonstrate that the proposed method outperforms the previous method,offering more accurate and efficient estimations.展开更多
In the parameter tracking of time-varying systems, the ordinary method is weighted least squares with the rectangular window or the exponential window. In this paper we propose a new kind of sliding window called the ...In the parameter tracking of time-varying systems, the ordinary method is weighted least squares with the rectangular window or the exponential window. In this paper we propose a new kind of sliding window called the multiple exponential window, and then use it to fit time-varying Gaussian vector autoregressive models. The asymptotic bias and covariance of the estimator of the parameter for time-invariant models are also derived. Simulation results show that the multiple exponential windows have better parameter tracking effect than rectangular windows and exponential ones.展开更多
X-ray pulsars offer stable, periodic X-ray pulse sequences that can be used in spacecraft positioning systems. A method using X-ray pulsars to determine the initial orbit of a satellite is presented in this paper. Thi...X-ray pulsars offer stable, periodic X-ray pulse sequences that can be used in spacecraft positioning systems. A method using X-ray pulsars to determine the initial orbit of a satellite is presented in this paper. This method suggests only one detector to be equipped on the satellite and assumes that the detector observes three pulsars in turn. To improve the performance, the use of incremental phase in one observation duration is proposed, and the incremental phase is combined with the time difference of arrival(TDOA). Then, a weighted least squares(WLS) algorithm is formulated to calculate the initial orbit. Numerical simulations are performed to assess the proposed orbit determination method.展开更多
文摘In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production.
基金supported by the National Natural Science Foundation of China (No. 11071033)the Fundamental Research Funds for the Central Universities (No. 090405013)
文摘A class of preconditioned iterative methods, i.e., preconditioned generalized accelerated overrelaxation (GAOR) methods, is proposed to solve linear systems based on a class of weighted linear least squares problems. The convergence and comparison results are obtained. The comparison results show that the convergence rate of the preconditioned iterative methods is better than that of the original methods. Furthermore, the effectiveness of the proposed methods is shown in the numerical experiment.
基金This work is supported by Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX18_0467)Jiangsu Province,China.During the revision of this paper,the author is supported by China Scholarship Council(No.201906840021)China to continue some research related to data processing.
文摘Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matrix and filter parameters are difficult to be determined,which may result in filtering divergence.As to the problem that the accuracy of state estimation for nonlinear ballistic model strongly depends on its mathematical model,we improve the weighted least squares method(WLSM)with minimum model error principle.Invariant embedding method is adopted to solve the cost function including the model error.With the knowledge of measurement data and measurement error covariance matrix,we use gradient descent algorithm to determine the weighting matrix of model error.The uncertainty and linearization error of model are recursively estimated by the proposed method,thus achieving an online filtering estimation of the observations.Simulation results indicate that the proposed recursive estimation algorithm is insensitive to initial conditions and of good robustness.
基金supported by the National Natural Science Foundation of China(Grant No.U21B2050).
文摘A novel hybrid scheme for the maneuver detection and estimation of a noncooperative space target was proposed in this study.The optical measurements,together with the range and range rate measurements from the ground-based radars,were used in the tracking scenarios.In many tracking scenarios,radar resources for non-cooperative targets are constrained,particularly for near-earth targets,where multiple objects can only be tracked by a single radar at a time.This limitation hinders the accurate estimation of noncooperative target maneuvers,and can at times result in target loss.Existing literature has addressed this issue to some extent through various maneuvering target-tracking methods.To address this problem,a hybrid maneuver detection and estimation method that combines the input detection and estimation extended kalman filter and the weighted nonlinear least squares method is presented.Simulation results demonstrate that the proposed method outperforms the previous method,offering more accurate and efficient estimations.
文摘In the parameter tracking of time-varying systems, the ordinary method is weighted least squares with the rectangular window or the exponential window. In this paper we propose a new kind of sliding window called the multiple exponential window, and then use it to fit time-varying Gaussian vector autoregressive models. The asymptotic bias and covariance of the estimator of the parameter for time-invariant models are also derived. Simulation results show that the multiple exponential windows have better parameter tracking effect than rectangular windows and exponential ones.
基金supported by the National Natural Science Foundation of China(No.61401340)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2016JM6035)+1 种基金the Fundamental Research Funds for the Central Universities,China(No.JB161303)and the Areospace T.T.&C.Innovation Program(No.201515A)
文摘X-ray pulsars offer stable, periodic X-ray pulse sequences that can be used in spacecraft positioning systems. A method using X-ray pulsars to determine the initial orbit of a satellite is presented in this paper. This method suggests only one detector to be equipped on the satellite and assumes that the detector observes three pulsars in turn. To improve the performance, the use of incremental phase in one observation duration is proposed, and the incremental phase is combined with the time difference of arrival(TDOA). Then, a weighted least squares(WLS) algorithm is formulated to calculate the initial orbit. Numerical simulations are performed to assess the proposed orbit determination method.