To improve the treatment efficiency of essential boundary condition in mesh-less methods, a simple and robust method is proposed in this paper. Rising weight of nodes in the construction of trail function, specified f...To improve the treatment efficiency of essential boundary condition in mesh-less methods, a simple and robust method is proposed in this paper. Rising weight of nodes in the construction of trail function, specified for essential boundary condition, can make the trail function pass through these nodes. And then, the trail function can satisfy the essential boundary condition previously by setting diagonal element to 1 or multiplying diagonal element by a big number in FEM. The MLS method is adopted to validate this method, and it is proved that this method is eostless and robust in most of mesh-less methods.展开更多
This paper deals with the blow-up properties of positive solutions to a localized degenerate and singular parabolic equation with weighted nonlocal boundary condi- tions. Under appropriate hypotheses, the global exist...This paper deals with the blow-up properties of positive solutions to a localized degenerate and singular parabolic equation with weighted nonlocal boundary condi- tions. Under appropriate hypotheses, the global existence and finite time blow-up of positive solutions are obtained. Furthermore, the global blow-up behavior and the uniform blow-up profile of blow-up solutions are also described. We find that the blow-up set is the whole domain {0, a}, including the boundaries, and this differs from parabolic equations with local sources case or with homogeneous Dirichlet boundary conditions case.展开更多
This paper studies the weighted Hardy inequalities on the discrete intervals with four different kinds of boundary conditions. The main result is the uniform expression of the basic estimate of the optimal constant wi...This paper studies the weighted Hardy inequalities on the discrete intervals with four different kinds of boundary conditions. The main result is the uniform expression of the basic estimate of the optimal constant with the corresponding boundary condition. Firstly, one-side boundary condition is considered, which means that the sequences vanish at the right endpoint (ND-case). Based on the dual method, it can be translated into the case vanishing at left endpoint (DN-case). Secondly, the condition is the case that the sequences vanish at two endpoints (DD-case). The third type of condition is the generality of the mean zero condition (NN-case), which is motivated from probability theory. To deal with the second and the third kinds of inequalities, the splitting technique is presented. Finally, as typical applications, some examples are included.展开更多
In this paper, we investigate the blow-up properties of a quasilinear reaction-diffusion system with nonlocal nonlinear sources and weighted nonlocal Dirichlet boundary conditions. The critical exponent is determined ...In this paper, we investigate the blow-up properties of a quasilinear reaction-diffusion system with nonlocal nonlinear sources and weighted nonlocal Dirichlet boundary conditions. The critical exponent is determined under various situations of the weight functions. It is observed that the boundary weight functions play an important role in determining the blow-up conditions. In addition, the blow-up rate estimate of non-global solutions for a class of weight functions is also obtained, which is found to be independent of nonlinear diffusion parameters m and n.展开更多
A novel third-order optimized symmetric weighted essentially non-oscillatory(WENO-OS3)scheme is used to simulate the hypersonic shock wave/boundary layer interactions.Firstly,the scheme is presented with the achieveme...A novel third-order optimized symmetric weighted essentially non-oscillatory(WENO-OS3)scheme is used to simulate the hypersonic shock wave/boundary layer interactions.Firstly,the scheme is presented with the achievement of low dissipation in smooth region and robust shock-capturing capabilities in discontinuities.The Maxwell slip boundary conditions are employed to consider the rarefied effect near the surface.Secondly,several validating tests are given to show the good resolution of the WENO-OS3 scheme and the feasibility of the Maxwell slip boundary conditions.Finally,hypersonic flows around the hollow cylinder truncated flare(HCTF)and the25°/55°sharp double cone are studied.Discussions are made on the characteristics of the hypersonic shock wave/boundary layer interactions with and without the consideration of the slip effect.The results indicate that the scheme has a good capability in predicting heat transfer with a high resolution for describing fluid structures.With the slip boundary conditions,the separation region at the corner is smaller and the prediction is more accurate than that with no-slip boundary conditions.展开更多
In this study, we use analytical methods and Sylvester inertia theorem to research a class of second order difference operators with indefinite weights and coupled boundary conditions. The eigenvalue problem with sign...In this study, we use analytical methods and Sylvester inertia theorem to research a class of second order difference operators with indefinite weights and coupled boundary conditions. The eigenvalue problem with sign-changing weight has lasted a long time. The number of eigenvalues and the number of sign changes of the corresponding eigenfunctions of discrete equations under different boundary conditions are mainly studied. For the discrete Sturm-Liouville problems, similar conclusions about the properties of eigenvalues and the number of sign changes of the corresponding eigenfunctions are obtained under different boundary conditions, such as periodic boundary conditions, antiperiodic boundary conditions and separated boundary conditions etc. The purpose of this paper is to extend the similar conclusion to the coupled boundary conditions, which is of great significance to the perfection of the theory of the discrete Sturm-Liouville problems. We came to the following conclusions: first, the eigenvalues of the problem are real and single, the number of the positive eigenvalues is equal to the number of positive elements in the weight function, and the number of negative eigenvalues is equal to the number of negative elements in the weight function. Second, under some conditions, we obtain the sign change of the eigenfunction corresponding to the j-th positive/negative eigenvalue.展开更多
文摘To improve the treatment efficiency of essential boundary condition in mesh-less methods, a simple and robust method is proposed in this paper. Rising weight of nodes in the construction of trail function, specified for essential boundary condition, can make the trail function pass through these nodes. And then, the trail function can satisfy the essential boundary condition previously by setting diagonal element to 1 or multiplying diagonal element by a big number in FEM. The MLS method is adopted to validate this method, and it is proved that this method is eostless and robust in most of mesh-less methods.
基金supported by the research scheme of the natural science of the universities of Jiangsu province(08KJD110017 and 13KJB110028)
文摘This paper deals with the blow-up properties of positive solutions to a localized degenerate and singular parabolic equation with weighted nonlocal boundary condi- tions. Under appropriate hypotheses, the global existence and finite time blow-up of positive solutions are obtained. Furthermore, the global blow-up behavior and the uniform blow-up profile of blow-up solutions are also described. We find that the blow-up set is the whole domain {0, a}, including the boundaries, and this differs from parabolic equations with local sources case or with homogeneous Dirichlet boundary conditions case.
基金Supported by NSFC(Grant No.11131003)the “985” project from the Ministry of Education in China
文摘This paper studies the weighted Hardy inequalities on the discrete intervals with four different kinds of boundary conditions. The main result is the uniform expression of the basic estimate of the optimal constant with the corresponding boundary condition. Firstly, one-side boundary condition is considered, which means that the sequences vanish at the right endpoint (ND-case). Based on the dual method, it can be translated into the case vanishing at left endpoint (DN-case). Secondly, the condition is the case that the sequences vanish at two endpoints (DD-case). The third type of condition is the generality of the mean zero condition (NN-case), which is motivated from probability theory. To deal with the second and the third kinds of inequalities, the splitting technique is presented. Finally, as typical applications, some examples are included.
基金Supported by the National Natural Science Foundation of China (Grant No. 11171048)
文摘In this paper, we investigate the blow-up properties of a quasilinear reaction-diffusion system with nonlocal nonlinear sources and weighted nonlocal Dirichlet boundary conditions. The critical exponent is determined under various situations of the weight functions. It is observed that the boundary weight functions play an important role in determining the blow-up conditions. In addition, the blow-up rate estimate of non-global solutions for a class of weight functions is also obtained, which is found to be independent of nonlinear diffusion parameters m and n.
基金supported by the National Key Basic Research and Development Program (No.2014CB744100)
文摘A novel third-order optimized symmetric weighted essentially non-oscillatory(WENO-OS3)scheme is used to simulate the hypersonic shock wave/boundary layer interactions.Firstly,the scheme is presented with the achievement of low dissipation in smooth region and robust shock-capturing capabilities in discontinuities.The Maxwell slip boundary conditions are employed to consider the rarefied effect near the surface.Secondly,several validating tests are given to show the good resolution of the WENO-OS3 scheme and the feasibility of the Maxwell slip boundary conditions.Finally,hypersonic flows around the hollow cylinder truncated flare(HCTF)and the25°/55°sharp double cone are studied.Discussions are made on the characteristics of the hypersonic shock wave/boundary layer interactions with and without the consideration of the slip effect.The results indicate that the scheme has a good capability in predicting heat transfer with a high resolution for describing fluid structures.With the slip boundary conditions,the separation region at the corner is smaller and the prediction is more accurate than that with no-slip boundary conditions.
文摘In this study, we use analytical methods and Sylvester inertia theorem to research a class of second order difference operators with indefinite weights and coupled boundary conditions. The eigenvalue problem with sign-changing weight has lasted a long time. The number of eigenvalues and the number of sign changes of the corresponding eigenfunctions of discrete equations under different boundary conditions are mainly studied. For the discrete Sturm-Liouville problems, similar conclusions about the properties of eigenvalues and the number of sign changes of the corresponding eigenfunctions are obtained under different boundary conditions, such as periodic boundary conditions, antiperiodic boundary conditions and separated boundary conditions etc. The purpose of this paper is to extend the similar conclusion to the coupled boundary conditions, which is of great significance to the perfection of the theory of the discrete Sturm-Liouville problems. We came to the following conclusions: first, the eigenvalues of the problem are real and single, the number of the positive eigenvalues is equal to the number of positive elements in the weight function, and the number of negative eigenvalues is equal to the number of negative elements in the weight function. Second, under some conditions, we obtain the sign change of the eigenfunction corresponding to the j-th positive/negative eigenvalue.