In this paper,we investigate the complete convergence and complete moment conver-gence for weighted sums of arrays of rowwise asymptotically negatively associated(ANA)random variables,without assuming identical distri...In this paper,we investigate the complete convergence and complete moment conver-gence for weighted sums of arrays of rowwise asymptotically negatively associated(ANA)random variables,without assuming identical distribution.The obtained results not only extend those of An and Yuan[1]and Shen et al.[2]to the case of ANA random variables,but also partially improve them.展开更多
In this paper, strong laws of large numbers for weighted sums of ■-mixing sequence are investigated. Our results extend the corresponding results for negatively associated sequence to the case of ■-mixing sequence.
In this article, the author establishes the strong laws for linear statistics that are weighted sums of a m-negatively associated(m-NA) random sample. The obtained results extend and improve the result of Qiu and Yang...In this article, the author establishes the strong laws for linear statistics that are weighted sums of a m-negatively associated(m-NA) random sample. The obtained results extend and improve the result of Qiu and Yang in [1] to m-NA random variables.展开更多
In this paper the authors study the complete, weak and almost sure convergence for weighted sums of NOD random variables and obtain some new limit theorems for weighted sums of NOD random variables, which extend the c...In this paper the authors study the complete, weak and almost sure convergence for weighted sums of NOD random variables and obtain some new limit theorems for weighted sums of NOD random variables, which extend the corresponding theorems of Stout [1], Thrum [2] and Hu et al. [3].展开更多
Let {(D n, FFFn),n/->1} be a sequence of martingale differences and {a ni, 1≤i≤n,n≥1} be an array of real constants. Almost sure convergence for the row sums ?i = 1n ani D1\sum\limits_{i = 1}^n {a_{ni} D_1 } are...Let {(D n, FFFn),n/->1} be a sequence of martingale differences and {a ni, 1≤i≤n,n≥1} be an array of real constants. Almost sure convergence for the row sums ?i = 1n ani D1\sum\limits_{i = 1}^n {a_{ni} D_1 } are discussed. We also discuss complete convergence for the moving average processes underB-valued martingale differences assumption.展开更多
In this paper, the complete convergence for the weighted sums of independent and identically distributed random variables in Stout [9] is improved and extended under NOD setup.The more optimal moment condition is give...In this paper, the complete convergence for the weighted sums of independent and identically distributed random variables in Stout [9] is improved and extended under NOD setup.The more optimal moment condition is given. The main results also hold for END sequence.展开更多
By using Rosenthal type moment inequality for extended negatively de- pendent random variables, we establish the equivalent conditions of complete convergence for weighted sums of sequences of extended negatively depe...By using Rosenthal type moment inequality for extended negatively de- pendent random variables, we establish the equivalent conditions of complete convergence for weighted sums of sequences of extended negatively dependent random variables under more general conditions. These results complement and improve the corresponding results obtained by Li et al. (Li D L, RAO M B, Jiang T F, Wang X C. Complete convergence and almost sure convergence of weighted sums of random variables. J. Theoret. Probab., 1995, 8: 49-76) and Liang (Liang H Y. Complete convergence for weighted sums of negatively associated random variables. Statist. Probab. Lett., 2000, 48: 317-325).展开更多
We mainly study the almost sure limiting behavior of weighted sums of the form ∑ni=1 aiXi/bn , where {Xn, n ≥ 1} is an arbitrary Banach space valued random element sequence or Banach space valued martingale differen...We mainly study the almost sure limiting behavior of weighted sums of the form ∑ni=1 aiXi/bn , where {Xn, n ≥ 1} is an arbitrary Banach space valued random element sequence or Banach space valued martingale difference sequence and {an, n ≥ 1} and {bn,n ≥ 1} are two sequences of positive constants. Some new strong laws of large numbers for such weighted sums are proved under mild conditions.展开更多
For double arrays of constants {a ni, 1≤i≤k n, n≥1} and NA r.v. 's {X n, n≥1}, conditions for almost sure convergence of are given. Both casesk n ↑ ∞ andk n=∞ are treated. A Marcinkiewicz-type theorem for ...For double arrays of constants {a ni, 1≤i≤k n, n≥1} and NA r.v. 's {X n, n≥1}, conditions for almost sure convergence of are given. Both casesk n ↑ ∞ andk n=∞ are treated. A Marcinkiewicz-type theorem for i. d. NA sequences is obtained as a special case.展开更多
In this paper, we discuss the complete convergence of weighted sums for arrays of rowwise m-negatively associated random variables. By applying moment inequality and truncation methods, the sufficient conditions of co...In this paper, we discuss the complete convergence of weighted sums for arrays of rowwise m-negatively associated random variables. By applying moment inequality and truncation methods, the sufficient conditions of complete convergence of weighted sums for arrays of rowwise m-negatively associated random variables are established. These results generalize and complement some known conclusions.展开更多
In this paper, we prove an almost sure central limit theorem for weighted sums of mixing sequences of random variables without stationary assumptions. We no longer restrict to logarithmic averages, but allow rather ar...In this paper, we prove an almost sure central limit theorem for weighted sums of mixing sequences of random variables without stationary assumptions. We no longer restrict to logarithmic averages, but allow rather arbitrary weight sequences. This extends the earlier work on mixing random variables展开更多
In this article, we study the complete convergence for weighted sums of widely orthant dependent random variables. By using the exponential probability inequality, we establish a complete convergence result for weight...In this article, we study the complete convergence for weighted sums of widely orthant dependent random variables. By using the exponential probability inequality, we establish a complete convergence result for weighted sums of widely orthant dependent random variables under mild conditions of weights and moments. The result obtained in the paper generalizes the corresponding ones for independent random variables and negatively dependent random variables.展开更多
This paper studies the joint tail behavior of two randomly weighted sums∑_(i=1)^(m)Θ_(i)X_(i)and∑_(j=1)^(n)θ_(j)Y_(j)for some m,n∈N∪{∞},in which the primary random variables{X_(i);i∈N}and{Y_(i);i∈N},respectiv...This paper studies the joint tail behavior of two randomly weighted sums∑_(i=1)^(m)Θ_(i)X_(i)and∑_(j=1)^(n)θ_(j)Y_(j)for some m,n∈N∪{∞},in which the primary random variables{X_(i);i∈N}and{Y_(i);i∈N},respectively,are real-valued,dependent and heavy-tailed,while the random weights{Θi,θi;i∈N}are nonnegative and arbitrarily dependent,but the three sequences{X_(i);i∈N},{Y_(i);i∈N}and{Θ_(i),θ_(i);i∈N}are mutually independent.Under two types of weak dependence assumptions on the heavy-tailed primary random variables and some mild moment conditions on the random weights,we establish some(uniformly)asymptotic formulas for the joint tail probability of the two randomly weighted sums,expressing the insensitivity with respect to the underlying weak dependence structures.As applications,we consider both discrete-time and continuous-time insurance risk models,and obtain some asymptotic results for ruin probabilities.展开更多
In this article,we study strong limit theorems for weighted sums of extended negatively dependent random variables under the sub-linear expectations.We establish general strong law and complete convergence theorems fo...In this article,we study strong limit theorems for weighted sums of extended negatively dependent random variables under the sub-linear expectations.We establish general strong law and complete convergence theorems for weighted sums of extended negatively dependent random variables under the sub-linear expectations.Our results of strong limit theorems are more general than some related results previously obtained by Thrum(1987),Li et al.(1995)and Wu(2010)in classical probability space.展开更多
Let{X_(ni),F_(ni);1≤i≤n,n≥1}be an array of R^(d)martingale difference random vectors and{A_(ni),1≤i≤n,n≥1}be an array of m×d matrices of real numbers.In this paper,the Marcinkiewicz-Zygmund type weak law of...Let{X_(ni),F_(ni);1≤i≤n,n≥1}be an array of R^(d)martingale difference random vectors and{A_(ni),1≤i≤n,n≥1}be an array of m×d matrices of real numbers.In this paper,the Marcinkiewicz-Zygmund type weak law of large numbers for maximal weighted sums of martingale difference random vectors is obtained with not necessarily finite p-th(1<p<2)moments.Moreover,the complete convergence and strong law of large numbers are established under some mild conditions.An application to multivariate simple linear regression model is also provided.展开更多
In this paper, the complete convergence and complete moment convergence for maximal weighted sums of extended negatively dependent random variables are investigated. Some sufficient conditions for the convergence are ...In this paper, the complete convergence and complete moment convergence for maximal weighted sums of extended negatively dependent random variables are investigated. Some sufficient conditions for the convergence are provided. In addition, the Marcinkiewicz Zygmund type strong law of large numbers for weighted sums of extended negatively dependent random variables is obtained. The results obtained in the article extend the corresponding ones for independent random variables and some dependent random variables.展开更多
In this paper,two new functions are introduced to depict the Jamison weighted sum of random variables instead using the common methods,their properties and relationships are system- atically discussed.We also analysed...In this paper,two new functions are introduced to depict the Jamison weighted sum of random variables instead using the common methods,their properties and relationships are system- atically discussed.We also analysed the implication of the conditions in previous papers.Then we apply these consequences to B-valued random variables,and greatly improve the original results of the strong convergence of the general Jamison weighted sum.Furthermore,our discussions are useful to the corresponding questions of real-valued random variables.展开更多
This paper mainly studies the strong convergence properties for weighted sums of extended negatively dependent(END,for short)random variables.Some sufficient conditions to prove the strong law of large numbers for wei...This paper mainly studies the strong convergence properties for weighted sums of extended negatively dependent(END,for short)random variables.Some sufficient conditions to prove the strong law of large numbers for weighted sums of END random variables are provided.In particular,the authors obtain the weighted version of Kolmogorov type strong law of large numbers for END random variables as a product.The results that the authors obtained generalize the corresponding ones for independent random variables and some dependent random variables.As an application,the authors investigate the errors-in-variables(EV,for short)regression models and establish the strong consistency for the least square estimators.Simulation studies are conducted to demonstrate the performance of the proposed procedure and a real example is analysed for illustration.展开更多
Let {Xni} be an array of rowwise negatively associated random variables and Tnk=k∑i=1 i^a Xni for a ≥ -1, Snk =∑|i|≤k Ф(i/nη)1/nη Xni for η∈(0,1],where Ф is some function. The author studies necessary a...Let {Xni} be an array of rowwise negatively associated random variables and Tnk=k∑i=1 i^a Xni for a ≥ -1, Snk =∑|i|≤k Ф(i/nη)1/nη Xni for η∈(0,1],where Ф is some function. The author studies necessary and sufficient conditions of ∞∑n=1 AnP(max 1≤k≤n|Tnk|〉εBn)〈∞ and ∞∑n=1 CnP(max 0≤k≤mn|Snk|〉εDn)〈∞ for all ε 〉 0, where An, Bn, Cn and Dn are some positive constants, mn ∈ N with mn /nη →∞. The results of Lanzinger and Stadtmfiller in 2003 are extended from the i.i.d, case to the case of the negatively associated, not necessarily identically distributed random variables. Also, the result of Pruss in 2003 on independent variables reduces to a special case of the present paper; furthermore, the necessity part of his result is complemented.展开更多
The strong laws of large numbers and laws of the single logarithm for weighted sums of NOD random variables are established.The results presented generalize the corresponding results of Chen and Gan [5] in independent...The strong laws of large numbers and laws of the single logarithm for weighted sums of NOD random variables are established.The results presented generalize the corresponding results of Chen and Gan [5] in independent sequence case.展开更多
基金National Natural Science Foundation of China (Grant Nos.12061028, 71871046)Support Program of the Guangxi China Science Foundation (Grant No.2018GXNSFAA281011)。
文摘In this paper,we investigate the complete convergence and complete moment conver-gence for weighted sums of arrays of rowwise asymptotically negatively associated(ANA)random variables,without assuming identical distribution.The obtained results not only extend those of An and Yuan[1]and Shen et al.[2]to the case of ANA random variables,but also partially improve them.
基金Foundation item: Supported by the National Natural Science Foundation of China(11171001, 11201001) Supported by the Natural Science Foundation of Anhui Province(t208085QA03, 1308085QA03)
文摘In this paper, strong laws of large numbers for weighted sums of ■-mixing sequence are investigated. Our results extend the corresponding results for negatively associated sequence to the case of ■-mixing sequence.
基金Foundation item: Supported by the Humanities and Social Sciences Foundation for the Youth Scholars of Ministry of Education of China(12YJCZH217) Supported by the Natural Science Foundation of Anhui Province(1308085MA03) Supported by the Key Natural Science Foundation of Educational Committe of Anhui Province(KJ2014A255)
文摘In this article, the author establishes the strong laws for linear statistics that are weighted sums of a m-negatively associated(m-NA) random sample. The obtained results extend and improve the result of Qiu and Yang in [1] to m-NA random variables.
文摘In this paper the authors study the complete, weak and almost sure convergence for weighted sums of NOD random variables and obtain some new limit theorems for weighted sums of NOD random variables, which extend the corresponding theorems of Stout [1], Thrum [2] and Hu et al. [3].
文摘Let {(D n, FFFn),n/->1} be a sequence of martingale differences and {a ni, 1≤i≤n,n≥1} be an array of real constants. Almost sure convergence for the row sums ?i = 1n ani D1\sum\limits_{i = 1}^n {a_{ni} D_1 } are discussed. We also discuss complete convergence for the moving average processes underB-valued martingale differences assumption.
基金Supported by the National Natural Science Foundation of China(11271161)
文摘In this paper, the complete convergence for the weighted sums of independent and identically distributed random variables in Stout [9] is improved and extended under NOD setup.The more optimal moment condition is given. The main results also hold for END sequence.
基金The NSF(11271020 and 11201004)of Chinathe NSF(10040606Q30 and 1208085MA11)of Anhui Provincethe NSF(KJ2012ZD01)of Education Department of Anhui Province
文摘By using Rosenthal type moment inequality for extended negatively de- pendent random variables, we establish the equivalent conditions of complete convergence for weighted sums of sequences of extended negatively dependent random variables under more general conditions. These results complement and improve the corresponding results obtained by Li et al. (Li D L, RAO M B, Jiang T F, Wang X C. Complete convergence and almost sure convergence of weighted sums of random variables. J. Theoret. Probab., 1995, 8: 49-76) and Liang (Liang H Y. Complete convergence for weighted sums of negatively associated random variables. Statist. Probab. Lett., 2000, 48: 317-325).
基金Supported by the National Natural Science Foundationof China (10671149)
文摘We mainly study the almost sure limiting behavior of weighted sums of the form ∑ni=1 aiXi/bn , where {Xn, n ≥ 1} is an arbitrary Banach space valued random element sequence or Banach space valued martingale difference sequence and {an, n ≥ 1} and {bn,n ≥ 1} are two sequences of positive constants. Some new strong laws of large numbers for such weighted sums are proved under mild conditions.
文摘For double arrays of constants {a ni, 1≤i≤k n, n≥1} and NA r.v. 's {X n, n≥1}, conditions for almost sure convergence of are given. Both casesk n ↑ ∞ andk n=∞ are treated. A Marcinkiewicz-type theorem for i. d. NA sequences is obtained as a special case.
基金The NSF(10901003) of Chinathe NSF(1208085MA11) of Anhui Provincethe NSF(KJ2012ZD01) of Education Department of Anhui Province
文摘In this paper, we discuss the complete convergence of weighted sums for arrays of rowwise m-negatively associated random variables. By applying moment inequality and truncation methods, the sufficient conditions of complete convergence of weighted sums for arrays of rowwise m-negatively associated random variables are established. These results generalize and complement some known conclusions.
文摘In this paper, we prove an almost sure central limit theorem for weighted sums of mixing sequences of random variables without stationary assumptions. We no longer restrict to logarithmic averages, but allow rather arbitrary weight sequences. This extends the earlier work on mixing random variables
基金Supported by the Natural Science Foundation of Anhui Province(1308085QA03)Supported by the Quality Improvement Projects for Undergraduate Education of Anhui University(ZLTS2015035)+1 种基金Supported by the Research Teaching Model Curriculum of Anhui University(xjyjkc1407)Supported by the Students Innovative Training Project of Anhui University(201410357118)
文摘In this article, we study the complete convergence for weighted sums of widely orthant dependent random variables. By using the exponential probability inequality, we establish a complete convergence result for weighted sums of widely orthant dependent random variables under mild conditions of weights and moments. The result obtained in the paper generalizes the corresponding ones for independent random variables and negatively dependent random variables.
基金supported by the Humanities and Social Sciences Foundation of the Ministry of Education of China(Grant No.20YJA910006)Natural Science Foundation of Jiangsu Province of China(Grant No.BK20201396)+2 种基金supported by the Postgraduate Research and Practice Innovation Program of Jiangsu Province of China(Grant No.KYCX211939)supported by the Research Grants Council of Hong KongChina(Grant No.HKU17329216)。
文摘This paper studies the joint tail behavior of two randomly weighted sums∑_(i=1)^(m)Θ_(i)X_(i)and∑_(j=1)^(n)θ_(j)Y_(j)for some m,n∈N∪{∞},in which the primary random variables{X_(i);i∈N}and{Y_(i);i∈N},respectively,are real-valued,dependent and heavy-tailed,while the random weights{Θi,θi;i∈N}are nonnegative and arbitrarily dependent,but the three sequences{X_(i);i∈N},{Y_(i);i∈N}and{Θ_(i),θ_(i);i∈N}are mutually independent.Under two types of weak dependence assumptions on the heavy-tailed primary random variables and some mild moment conditions on the random weights,we establish some(uniformly)asymptotic formulas for the joint tail probability of the two randomly weighted sums,expressing the insensitivity with respect to the underlying weak dependence structures.As applications,we consider both discrete-time and continuous-time insurance risk models,and obtain some asymptotic results for ruin probabilities.
基金supported by the Natural Science Foundation of Guangxi(Grant No.2024GXNSFAA010476)the National Natural Science Foundation of China(Grant No.12361031)。
文摘In this article,we study strong limit theorems for weighted sums of extended negatively dependent random variables under the sub-linear expectations.We establish general strong law and complete convergence theorems for weighted sums of extended negatively dependent random variables under the sub-linear expectations.Our results of strong limit theorems are more general than some related results previously obtained by Thrum(1987),Li et al.(1995)and Wu(2010)in classical probability space.
基金Supported by the Outstanding Youth Research Project of Anhui Colleges(Grant No.2022AH030156)。
文摘Let{X_(ni),F_(ni);1≤i≤n,n≥1}be an array of R^(d)martingale difference random vectors and{A_(ni),1≤i≤n,n≥1}be an array of m×d matrices of real numbers.In this paper,the Marcinkiewicz-Zygmund type weak law of large numbers for maximal weighted sums of martingale difference random vectors is obtained with not necessarily finite p-th(1<p<2)moments.Moreover,the complete convergence and strong law of large numbers are established under some mild conditions.An application to multivariate simple linear regression model is also provided.
基金Supported by National Natural Science Foundation of China(Grant Nos.11401415 and 11571250)
文摘In this paper, the complete convergence and complete moment convergence for maximal weighted sums of extended negatively dependent random variables are investigated. Some sufficient conditions for the convergence are provided. In addition, the Marcinkiewicz Zygmund type strong law of large numbers for weighted sums of extended negatively dependent random variables is obtained. The results obtained in the article extend the corresponding ones for independent random variables and some dependent random variables.
基金Research supported by National Science Foundation of China(No.10071081)special financial support of Chinese Academy of Sciences
文摘In this paper,two new functions are introduced to depict the Jamison weighted sum of random variables instead using the common methods,their properties and relationships are system- atically discussed.We also analysed the implication of the conditions in previous papers.Then we apply these consequences to B-valued random variables,and greatly improve the original results of the strong convergence of the general Jamison weighted sum.Furthermore,our discussions are useful to the corresponding questions of real-valued random variables.
基金supported by the National Natural Science Foundation of China under Grant Nos.11671012 and 11871072the Natural Science Foundation of Anhui Province under Grant Nos.1808085QA03,1908085QA01,1908085QA07+1 种基金the Provincial Natural Science Research Project of Anhui Colleges under Grant No.KJ2019A0003the Students Innovative Training Project of Anhui University under Grant No.201910357002。
文摘This paper mainly studies the strong convergence properties for weighted sums of extended negatively dependent(END,for short)random variables.Some sufficient conditions to prove the strong law of large numbers for weighted sums of END random variables are provided.In particular,the authors obtain the weighted version of Kolmogorov type strong law of large numbers for END random variables as a product.The results that the authors obtained generalize the corresponding ones for independent random variables and some dependent random variables.As an application,the authors investigate the errors-in-variables(EV,for short)regression models and establish the strong consistency for the least square estimators.Simulation studies are conducted to demonstrate the performance of the proposed procedure and a real example is analysed for illustration.
基金supported by the National Natural Science Foundation of China (No.10871146)the Spanish Ministry of Science and Innovation (No.MTM2008-03129)the Xunta de Galicia,Spain (No.PGIDIT07PXIB300191PR)
文摘Let {Xni} be an array of rowwise negatively associated random variables and Tnk=k∑i=1 i^a Xni for a ≥ -1, Snk =∑|i|≤k Ф(i/nη)1/nη Xni for η∈(0,1],where Ф is some function. The author studies necessary and sufficient conditions of ∞∑n=1 AnP(max 1≤k≤n|Tnk|〉εBn)〈∞ and ∞∑n=1 CnP(max 0≤k≤mn|Snk|〉εDn)〈∞ for all ε 〉 0, where An, Bn, Cn and Dn are some positive constants, mn ∈ N with mn /nη →∞. The results of Lanzinger and Stadtmfiller in 2003 are extended from the i.i.d, case to the case of the negatively associated, not necessarily identically distributed random variables. Also, the result of Pruss in 2003 on independent variables reduces to a special case of the present paper; furthermore, the necessity part of his result is complemented.
文摘The strong laws of large numbers and laws of the single logarithm for weighted sums of NOD random variables are established.The results presented generalize the corresponding results of Chen and Gan [5] in independent sequence case.