The addition of a hardener is necessary for the curing of urea-formaldehyde (UF) adhesives in the production of MDF and particleboard. The most commonly used hardener, ammonium chloride, however, is suspected to cause...The addition of a hardener is necessary for the curing of urea-formaldehyde (UF) adhesives in the production of MDF and particleboard. The most commonly used hardener, ammonium chloride, however, is suspected to cause the formation of poisonous dioxin when waste boards are combusted and hence considered as a potential source of pollution. To assess the feasibility of substituting ammonium sulphate for ammonium chloride, working properties and bonding strength were measured for UF adhesives with the two ...展开更多
In this work, the Mg–5Al–2Ca alloy was extruded at 573, 623 and 673 K, with a ratio of 16:1 and a constant speed of 3 mm/s. Results demonstrate that the Al2Ca particle is formed in Mg–5Al–2Ca alloy. The size, amo...In this work, the Mg–5Al–2Ca alloy was extruded at 573, 623 and 673 K, with a ratio of 16:1 and a constant speed of 3 mm/s. Results demonstrate that the Al2Ca particle is formed in Mg–5Al–2Ca alloy. The size, amount and distribution of Al2Ca particles are influenced evidently by extrusion temperature. Unlike previous reports, the intensity of basal texture increases with increasing extrusion temperature, and the reasons are analyzed and given. Even though the average grain size increases as the extrusion temperature increased from 573 to 623 K, the YS, UTS and elongation of asextruded Mg–5Al–2Ca alloy are almost kept the same at 573 and 623 K. The reason is speculated as the balance of grain size, Al2Ca phase and texture at the two temperatures. The work hardening rate depends on extrusion temperature, and the largest θ value of Mg–5Al–2Ca alloy is obtained when the extrusion was performed at 623 K.展开更多
As a new branch of efficient and low-cost mechanical energy conversion technology,triboelectric nanogenerator(TENG)is a potential solution to provide a long-term power supply for the Internet of Things(IoT)sensors and...As a new branch of efficient and low-cost mechanical energy conversion technology,triboelectric nanogenerator(TENG)is a potential solution to provide a long-term power supply for the Internet of Things(IoT)sensors and portable electronic devices.However,due to inherent working properties of TENG itself such as extremely high internal impedance,pulse,and alternating current(AC)output,TENG can not directly supply power to loads such as batteries efficiently.Based on these,we describe TENG’s performance from a new perspective of powering ability.It consists of two aspects:the ability to transport charge effectively and the ability to output high power quality current steadily.In order to push forward the developments and applications of TENG,it is necessary to improve its power supply capacity from different perspectives.Fortunately,in recent years,a variety of output signal’s management strategies aiming at effectively managing the generated electricity and significantly improving powering ability of TENG have obtained significantly progress.Herein,this paper discusses the working mechanisms and different load characteristics of TENG at first to clarify the electric performance of TENG.Then,on basis of theoretical analysis,the output signal’s management strategies are elaborated from four aspects:improving the cycle output electricity of TENG,increasing the surface charge density of TENG,improving the power quality of TENG-based energy harvesting system,promoting the application of TENG through integrated circuit(IC)technology and TENG network,and the relevant principles and applications are discussed systematically.Finally,the advantages and disadvantages of the above output signal’s management strategies are summarized and discussed,and the future development of the output signal’s management strategies for TENG is prospected.展开更多
The effects of deforming temperatures on the tensile behaviors of quenching and partitioning treated steels were investigated. It was found that the ultimate tensile strength of the steel decreased with the increasing...The effects of deforming temperatures on the tensile behaviors of quenching and partitioning treated steels were investigated. It was found that the ultimate tensile strength of the steel decreased with the increasing temperature from 25 to 100 ℃, reached the maximum value at 300 ℃, and then declined by a significant extent when the temperature further reached 400 ℃. The total elongations at 100, 200 and 300 ℃are at about the same level. The steel achieved optimal mechanical properties at 300 ℃due to the proper transformation behavior of retained austenite since the stability of retained austenite is largely dependent on the deforming temperature. When tested at 100 and 200 ℃, the retained aus tenite was reluctant to transform, while at the other temperatures, about 10 vol. % of retained aus- tenite transformed during the tensile tests. The relationship between the stability of retained austenite and the work hardening behavior of quenching and partitioning treated steels at different deforming temperatures was also studied and discussed in detail. In order to obtain excellent mechanical properties, the stability of retained austenite should be carefully controlled so that the effect of transforma tion-induced plasticity could take place continuously during plastic deformation.展开更多
文摘The addition of a hardener is necessary for the curing of urea-formaldehyde (UF) adhesives in the production of MDF and particleboard. The most commonly used hardener, ammonium chloride, however, is suspected to cause the formation of poisonous dioxin when waste boards are combusted and hence considered as a potential source of pollution. To assess the feasibility of substituting ammonium sulphate for ammonium chloride, working properties and bonding strength were measured for UF adhesives with the two ...
基金financially supported by the National Natural Science Foundation of China (Nos. 51201112, 51301120 and 51401144)the Natural Science Foundation of Shanxi (No. 2013021013-3)
文摘In this work, the Mg–5Al–2Ca alloy was extruded at 573, 623 and 673 K, with a ratio of 16:1 and a constant speed of 3 mm/s. Results demonstrate that the Al2Ca particle is formed in Mg–5Al–2Ca alloy. The size, amount and distribution of Al2Ca particles are influenced evidently by extrusion temperature. Unlike previous reports, the intensity of basal texture increases with increasing extrusion temperature, and the reasons are analyzed and given. Even though the average grain size increases as the extrusion temperature increased from 573 to 623 K, the YS, UTS and elongation of asextruded Mg–5Al–2Ca alloy are almost kept the same at 573 and 623 K. The reason is speculated as the balance of grain size, Al2Ca phase and texture at the two temperatures. The work hardening rate depends on extrusion temperature, and the largest θ value of Mg–5Al–2Ca alloy is obtained when the extrusion was performed at 623 K.
基金funded by the National Key R&D Project from Minister of Science and Technology(No.2021YFA1201602)the National Natural Science Foundation of China(Nos.52172203 and U21A20175).
文摘As a new branch of efficient and low-cost mechanical energy conversion technology,triboelectric nanogenerator(TENG)is a potential solution to provide a long-term power supply for the Internet of Things(IoT)sensors and portable electronic devices.However,due to inherent working properties of TENG itself such as extremely high internal impedance,pulse,and alternating current(AC)output,TENG can not directly supply power to loads such as batteries efficiently.Based on these,we describe TENG’s performance from a new perspective of powering ability.It consists of two aspects:the ability to transport charge effectively and the ability to output high power quality current steadily.In order to push forward the developments and applications of TENG,it is necessary to improve its power supply capacity from different perspectives.Fortunately,in recent years,a variety of output signal’s management strategies aiming at effectively managing the generated electricity and significantly improving powering ability of TENG have obtained significantly progress.Herein,this paper discusses the working mechanisms and different load characteristics of TENG at first to clarify the electric performance of TENG.Then,on basis of theoretical analysis,the output signal’s management strategies are elaborated from four aspects:improving the cycle output electricity of TENG,increasing the surface charge density of TENG,improving the power quality of TENG-based energy harvesting system,promoting the application of TENG through integrated circuit(IC)technology and TENG network,and the relevant principles and applications are discussed systematically.Finally,the advantages and disadvantages of the above output signal’s management strategies are summarized and discussed,and the future development of the output signal’s management strategies for TENG is prospected.
基金financial support of the National Key Research and Development Program of China(No.2017YFB0304401)National Natural Science Foundation of China(Nos.U1564203,51571141 and 51201105)the support provided by Shanghai Key Laboratory of Materials Laser Processing and Modification,Shanghai Jiao Tong University
文摘The effects of deforming temperatures on the tensile behaviors of quenching and partitioning treated steels were investigated. It was found that the ultimate tensile strength of the steel decreased with the increasing temperature from 25 to 100 ℃, reached the maximum value at 300 ℃, and then declined by a significant extent when the temperature further reached 400 ℃. The total elongations at 100, 200 and 300 ℃are at about the same level. The steel achieved optimal mechanical properties at 300 ℃due to the proper transformation behavior of retained austenite since the stability of retained austenite is largely dependent on the deforming temperature. When tested at 100 and 200 ℃, the retained aus tenite was reluctant to transform, while at the other temperatures, about 10 vol. % of retained aus- tenite transformed during the tensile tests. The relationship between the stability of retained austenite and the work hardening behavior of quenching and partitioning treated steels at different deforming temperatures was also studied and discussed in detail. In order to obtain excellent mechanical properties, the stability of retained austenite should be carefully controlled so that the effect of transforma tion-induced plasticity could take place continuously during plastic deformation.