Image authentication techniques have recently received a lot of attention for protecting images against unauthorized access.Due to the wide use of the Internet nowadays,the need to ensure data integrity and authentica...Image authentication techniques have recently received a lot of attention for protecting images against unauthorized access.Due to the wide use of the Internet nowadays,the need to ensure data integrity and authentication increases.Many techniques,such as watermarking and encryption,are used for securing images transmitted via the Internet.The majority of watermarking systems are PC-based,but they are not very portable.Hardwarebased watermarking methods need to be developed to accommodate real-time applications and provide portability.This paper presents hybrid data security techniques using a zero watermarking method to provide copyright protection for the transmitted color images using multi-channel orthogonal Legendre Fourier moments of fractional orders(MFrLFMs)and the advanced encryption standard(AES)algorithm on a low-cost Raspberry Pi.In order to increase embedding robustness,the watermark picture is scrambled using the Arnold method.Zero watermarking is implemented on the Raspberry Pi to produce a real-time ownership verification key.Before sending the ownership verification key and the original image to the monitoring station,we can encrypt the transmitted data with AES for additional security and hide any viewable information.The receiver next verifies the received image’s integrity to confirm its authenticity and that it has not been tampered with.We assessed the suggested algorithm’s resistance to many attacks.The suggested algorithm provides a reasonable degree of robustness while still being perceptible.The proposed method provides improved bit error rate(BER)and normalized correlation(NC)values compared to previous zero watermarking approaches.AES performance analysis is performed to demonstrate its effectiveness.Using a 256×256 image size,it takes only 2 s to apply the zero-watermark algorithm on the Raspberry Pi.展开更多
Behind the popularity of multimedia technology,the dispute over image copyright is getting worse.In the digital watermark prevention technology for copyright infringement,watermark technology is considered to be an im...Behind the popularity of multimedia technology,the dispute over image copyright is getting worse.In the digital watermark prevention technology for copyright infringement,watermark technology is considered to be an important technology to overcome data protection problems and verify the relationship between data ownership.Among the many digital watermarking technologies,zero watermarking technology has been favored in recent years.However,the existing zero watermark technology in the implementation process often needs a trusted third party to store watermarks,which may make the data too central,data storage security is low and copyright registration costs are too high,which creates a rare problem.The decentivization and information cannot be tampered of blockchain technology’s nature find new methods for image copyright protection.This paper studies the role of zero watermark algorithm in the image copyright and its complete storage and certification scheme,proposes a zero watermark image protection framework based on blockchain,and builds a system according to the framework.Combined with blockchain and zero watermarking technology,the framework uses inter IPFS(Inter Planetary File System)to solve the problem of blockchain efficient storage and sharing of large files.In addition,the application of user copyright information,image image query and image trading in the system are realized based on smart contracts,which solves the problem of lack of trusted third parties.Experiments show that the scheme is feasible and robust to various attacks.展开更多
The field of medical images has been rapidly evolving since the advent of the digital medical information era.However,medical data is susceptible to leaks and hacks during transmission.This paper proposed a robust mul...The field of medical images has been rapidly evolving since the advent of the digital medical information era.However,medical data is susceptible to leaks and hacks during transmission.This paper proposed a robust multi-watermarking algorithm for medical images based on GoogLeNet transfer learning to protect the privacy of patient data during transmission and storage,as well as to increase the resistance to geometric attacks and the capacity of embedded watermarks of watermarking algorithms.First,a pre-trained GoogLeNet network is used in this paper,based on which the parameters of several previous layers of the network are fixed and the network is fine-tuned for the constructed medical dataset,so that the pre-trained network can further learn the deep convolutional features in the medical dataset,and then the trained network is used to extract the stable feature vectors of medical images.Then,a two-dimensional Henon chaos encryption technique,which is more sensitive to initial values,is used to encrypt multiple different types of watermarked private information.Finally,the feature vector of the image is logically operated with the encrypted multiple watermark information,and the obtained key is stored in a third party,thus achieving zero watermark embedding and blind extraction.The experimental results confirmthe robustness of the algorithm from the perspective ofmultiple types of watermarks,while also demonstrating the successful embedding ofmultiple watermarks for medical images,and show that the algorithm is more resistant to geometric attacks than some conventional watermarking algorithms.展开更多
With the development of digitalization in healthcare,more and more information is delivered and stored in digital form,facilitating people’s lives significantly.In the meanwhile,privacy leakage and security issues co...With the development of digitalization in healthcare,more and more information is delivered and stored in digital form,facilitating people’s lives significantly.In the meanwhile,privacy leakage and security issues come along with it.Zero watermarking can solve this problem well.To protect the security of medical information and improve the algorithm’s robustness,this paper proposes a robust watermarking algorithm for medical images based on Non-Subsampled Shearlet Transform(NSST)and Schur decomposition.Firstly,the low-frequency subband image of the original medical image is obtained by NSST and chunked.Secondly,the Schur decomposition of low-frequency blocks to get stable values,extracting the maximum absolute value of the diagonal elements of the upper triangle matrix after the Schur decom-position of each low-frequency block and constructing the transition matrix from it.Then,the mean of the matrix is compared to each element’s value,creating a feature matrix by combining perceptual hashing,and selecting 32 bits as the feature sequence.Finally,the feature vector is exclusive OR(XOR)operated with the encrypted watermark information to get the zero watermark and complete registration with a third-party copyright certification center.Experimental data show that the Normalized Correlation(NC)values of watermarks extracted in random carrier medical images are above 0.5,with higher robustness than traditional algorithms,especially against geometric attacks and achieve watermark information invisibility without altering the carrier medical image.展开更多
The amount of 3D data stored and transmitted in the Internet of Medical Things(IoMT)is increasing,making protecting these medical data increasingly prominent.However,there are relatively few researches on 3D data wate...The amount of 3D data stored and transmitted in the Internet of Medical Things(IoMT)is increasing,making protecting these medical data increasingly prominent.However,there are relatively few researches on 3D data watermarking.Moreover,due to the particularity of medical data,strict data quality should be considered while protecting data security.To solve the problem,in the field of medical volume data,we proposed a robust watermarking algorithm based on Polar Cosine Transform and 3D-Discrete Cosine Transform(PCT and 3D-DCT).Each slice of the volume data was transformed by PCT to obtain feature row vector,and then the reshaped three-dimensional feature matrix was transformed by 3D-DCT.Based on the contour information of the volume data and the detail information of the inner slice,the visual feature vector was obtained by applying the per-ceptual hash.In addition,the watermark was encrypted by a multi-sensitive initial value Sine and Piecewise linear chaotic Mapping(SPM)system,and embedded as a zero watermark.The key was stored in a third party.Under the same experimental conditions,when the volume data is rotated by 80 degrees,cut 25%along the Z axis,and the JPEG compression quality is 1%,the Normalized Correlation Coefficient(NC)of the extracted watermark is 0.80,0.89,and 1.00 respectively,which are significantly higher than the comparison algorithm.展开更多
In this paper, three robust zero-watermark algorithms named Direct Current coefficient RElationship (DC-RE), CUmulant combined Singular Value Decomposition (CU-SVD), and CUmulant combined Singular Value Decomposition ...In this paper, three robust zero-watermark algorithms named Direct Current coefficient RElationship (DC-RE), CUmulant combined Singular Value Decomposition (CU-SVD), and CUmulant combined Singular Value Decomposition RElationship (CU-SVD-RE) are proposed. The algorithm DC-RE gets the feature vector from the relationship of DC coefficients between adjacent blocks, CU-SVD gets the feature vector from the singular value of third-order cumulants, while CU-SVD-RE combines the essence of the first two algorithms. Specially, CU-SVD-RE gets the feature vector from the relationship between singular values of third-order cumulants. Being a cross-over studying field of watermarking and cryptography, the zero-watermark algorithms are robust without modifying the carrier. Numerical simulation obviously shows that, under geometric attacks, the performance of CU-SVD-RE and DC-RE algorithm are better and all three proposed algorithms are robust to various attacks, such as median filter, salt and pepper noise, and Gaussian low-pass filter attacks.展开更多
A new buyer-seller watermarking protocol is proposed by applying a double encryption method and a novel mechanism of embedding a buyer's watermark. The protocol can effectively prevent against collusion attacks and t...A new buyer-seller watermarking protocol is proposed by applying a double encryption method and a novel mechanism of embedding a buyer's watermark. The protocol can effectively prevent against collusion attacks and the man in the middle attack if the third party is not trusted. Also, based on the proposed scheme for the first-hand transaction, a new buyer-reseller watermarking protocol and a formal multi-party watermarking protocol are also proposed. The proposed buyer-resell watermarking protocol only needs the original seller to provide transfer certificate and encryption-decryption service to support the second-hand transaction, and the multi-party watermarking protocol with distributed certificate authorities can overcome the difficulty in the combination of multicast mechanism with multiple unique watermarks and allow a seller to multicast the watermarked digital contents and key transaction information to n buyers. Furthermore, the idea of zero knowledge proof is also applied into the proposed scheme to allow the seller to take an effective control on the task performed by the third party.展开更多
基金funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number (PNURSP2023R442)。
文摘Image authentication techniques have recently received a lot of attention for protecting images against unauthorized access.Due to the wide use of the Internet nowadays,the need to ensure data integrity and authentication increases.Many techniques,such as watermarking and encryption,are used for securing images transmitted via the Internet.The majority of watermarking systems are PC-based,but they are not very portable.Hardwarebased watermarking methods need to be developed to accommodate real-time applications and provide portability.This paper presents hybrid data security techniques using a zero watermarking method to provide copyright protection for the transmitted color images using multi-channel orthogonal Legendre Fourier moments of fractional orders(MFrLFMs)and the advanced encryption standard(AES)algorithm on a low-cost Raspberry Pi.In order to increase embedding robustness,the watermark picture is scrambled using the Arnold method.Zero watermarking is implemented on the Raspberry Pi to produce a real-time ownership verification key.Before sending the ownership verification key and the original image to the monitoring station,we can encrypt the transmitted data with AES for additional security and hide any viewable information.The receiver next verifies the received image’s integrity to confirm its authenticity and that it has not been tampered with.We assessed the suggested algorithm’s resistance to many attacks.The suggested algorithm provides a reasonable degree of robustness while still being perceptible.The proposed method provides improved bit error rate(BER)and normalized correlation(NC)values compared to previous zero watermarking approaches.AES performance analysis is performed to demonstrate its effectiveness.Using a 256×256 image size,it takes only 2 s to apply the zero-watermark algorithm on the Raspberry Pi.
基金This work is supported by Hainan Provincial Key Research and Development Program(No.ZDYF2020018)Haikou Key Research and Development Program(No.2020-049)Hainan Provincial Natural Science Foundation of China(No.2019RC100).
文摘Behind the popularity of multimedia technology,the dispute over image copyright is getting worse.In the digital watermark prevention technology for copyright infringement,watermark technology is considered to be an important technology to overcome data protection problems and verify the relationship between data ownership.Among the many digital watermarking technologies,zero watermarking technology has been favored in recent years.However,the existing zero watermark technology in the implementation process often needs a trusted third party to store watermarks,which may make the data too central,data storage security is low and copyright registration costs are too high,which creates a rare problem.The decentivization and information cannot be tampered of blockchain technology’s nature find new methods for image copyright protection.This paper studies the role of zero watermark algorithm in the image copyright and its complete storage and certification scheme,proposes a zero watermark image protection framework based on blockchain,and builds a system according to the framework.Combined with blockchain and zero watermarking technology,the framework uses inter IPFS(Inter Planetary File System)to solve the problem of blockchain efficient storage and sharing of large files.In addition,the application of user copyright information,image image query and image trading in the system are realized based on smart contracts,which solves the problem of lack of trusted third parties.Experiments show that the scheme is feasible and robust to various attacks.
基金supported in part by the Natural Science Foundation of China under Grants 62063004the Key Research Project of Hainan Province under Grant ZDYF2021SHF Z093+1 种基金the Hainan Provincial Natural Science Foundation of China under Grants 2019RC018 and 619QN246the postdoctor research from Zhejiang Province under Grant ZJ2021028.
文摘The field of medical images has been rapidly evolving since the advent of the digital medical information era.However,medical data is susceptible to leaks and hacks during transmission.This paper proposed a robust multi-watermarking algorithm for medical images based on GoogLeNet transfer learning to protect the privacy of patient data during transmission and storage,as well as to increase the resistance to geometric attacks and the capacity of embedded watermarks of watermarking algorithms.First,a pre-trained GoogLeNet network is used in this paper,based on which the parameters of several previous layers of the network are fixed and the network is fine-tuned for the constructed medical dataset,so that the pre-trained network can further learn the deep convolutional features in the medical dataset,and then the trained network is used to extract the stable feature vectors of medical images.Then,a two-dimensional Henon chaos encryption technique,which is more sensitive to initial values,is used to encrypt multiple different types of watermarked private information.Finally,the feature vector of the image is logically operated with the encrypted multiple watermark information,and the obtained key is stored in a third party,thus achieving zero watermark embedding and blind extraction.The experimental results confirmthe robustness of the algorithm from the perspective ofmultiple types of watermarks,while also demonstrating the successful embedding ofmultiple watermarks for medical images,and show that the algorithm is more resistant to geometric attacks than some conventional watermarking algorithms.
基金supported in part by the Natural Science Foundation of China under Grants 62063004the Key Research Project of Hainan Province under Grant ZDYF2021SHFZ093+1 种基金the Hainan Provincial Natural Science Foundation of China under Grants 2019RC018 and 619QN246the postdoctoral research from Zhejiang Province under Grant ZJ2021028.
文摘With the development of digitalization in healthcare,more and more information is delivered and stored in digital form,facilitating people’s lives significantly.In the meanwhile,privacy leakage and security issues come along with it.Zero watermarking can solve this problem well.To protect the security of medical information and improve the algorithm’s robustness,this paper proposes a robust watermarking algorithm for medical images based on Non-Subsampled Shearlet Transform(NSST)and Schur decomposition.Firstly,the low-frequency subband image of the original medical image is obtained by NSST and chunked.Secondly,the Schur decomposition of low-frequency blocks to get stable values,extracting the maximum absolute value of the diagonal elements of the upper triangle matrix after the Schur decom-position of each low-frequency block and constructing the transition matrix from it.Then,the mean of the matrix is compared to each element’s value,creating a feature matrix by combining perceptual hashing,and selecting 32 bits as the feature sequence.Finally,the feature vector is exclusive OR(XOR)operated with the encrypted watermark information to get the zero watermark and complete registration with a third-party copyright certification center.Experimental data show that the Normalized Correlation(NC)values of watermarks extracted in random carrier medical images are above 0.5,with higher robustness than traditional algorithms,especially against geometric attacks and achieve watermark information invisibility without altering the carrier medical image.
基金supported in part by the Natural Science Foundation of China under Grants 62063004the Key Research Project of Hainan Province under Grant ZDYF2021SHFZ093+1 种基金the Hainan Provincial Natural Science Foundation of China under Grants 2019RC018 and 619QN246the postdoctor research from Zhejiang Province under Grant ZJ2021028.
文摘The amount of 3D data stored and transmitted in the Internet of Medical Things(IoMT)is increasing,making protecting these medical data increasingly prominent.However,there are relatively few researches on 3D data watermarking.Moreover,due to the particularity of medical data,strict data quality should be considered while protecting data security.To solve the problem,in the field of medical volume data,we proposed a robust watermarking algorithm based on Polar Cosine Transform and 3D-Discrete Cosine Transform(PCT and 3D-DCT).Each slice of the volume data was transformed by PCT to obtain feature row vector,and then the reshaped three-dimensional feature matrix was transformed by 3D-DCT.Based on the contour information of the volume data and the detail information of the inner slice,the visual feature vector was obtained by applying the per-ceptual hash.In addition,the watermark was encrypted by a multi-sensitive initial value Sine and Piecewise linear chaotic Mapping(SPM)system,and embedded as a zero watermark.The key was stored in a third party.Under the same experimental conditions,when the volume data is rotated by 80 degrees,cut 25%along the Z axis,and the JPEG compression quality is 1%,the Normalized Correlation Coefficient(NC)of the extracted watermark is 0.80,0.89,and 1.00 respectively,which are significantly higher than the comparison algorithm.
基金Supported by the National Natural Science Foundation of China (No. 60672095, 60972165, and 61071111)the National High Technology Project of China (No. 2007AA-11Z210)+2 种基金the Doctoral Fund of Ministry of Education of China (No. 20100092120012 and 20070286004)the Foundation of High Technology Project in Jiangsu Provincethe Natural Science Foundation of Jiangsu Province (No.BK2010240)
文摘In this paper, three robust zero-watermark algorithms named Direct Current coefficient RElationship (DC-RE), CUmulant combined Singular Value Decomposition (CU-SVD), and CUmulant combined Singular Value Decomposition RElationship (CU-SVD-RE) are proposed. The algorithm DC-RE gets the feature vector from the relationship of DC coefficients between adjacent blocks, CU-SVD gets the feature vector from the singular value of third-order cumulants, while CU-SVD-RE combines the essence of the first two algorithms. Specially, CU-SVD-RE gets the feature vector from the relationship between singular values of third-order cumulants. Being a cross-over studying field of watermarking and cryptography, the zero-watermark algorithms are robust without modifying the carrier. Numerical simulation obviously shows that, under geometric attacks, the performance of CU-SVD-RE and DC-RE algorithm are better and all three proposed algorithms are robust to various attacks, such as median filter, salt and pepper noise, and Gaussian low-pass filter attacks.
基金Internation al S&T Cooperation Project from National Ministry of Science and Technology(2006D FA73180)Research Fund for the Doc toral Program of Higher Education of China (20060497005).
文摘A new buyer-seller watermarking protocol is proposed by applying a double encryption method and a novel mechanism of embedding a buyer's watermark. The protocol can effectively prevent against collusion attacks and the man in the middle attack if the third party is not trusted. Also, based on the proposed scheme for the first-hand transaction, a new buyer-reseller watermarking protocol and a formal multi-party watermarking protocol are also proposed. The proposed buyer-resell watermarking protocol only needs the original seller to provide transfer certificate and encryption-decryption service to support the second-hand transaction, and the multi-party watermarking protocol with distributed certificate authorities can overcome the difficulty in the combination of multicast mechanism with multiple unique watermarks and allow a seller to multicast the watermarked digital contents and key transaction information to n buyers. Furthermore, the idea of zero knowledge proof is also applied into the proposed scheme to allow the seller to take an effective control on the task performed by the third party.