Operating an Agilent 7700X ICP-MS spectrometer under robust plasma conditions (1550 W) with a He-filled octopole collision cell and analysing solutions (?1 total dissolved solids) still suffered analyte peak suppressi...Operating an Agilent 7700X ICP-MS spectrometer under robust plasma conditions (1550 W) with a He-filled octopole collision cell and analysing solutions (?1 total dissolved solids) still suffered analyte peak suppression due to matrix effects. International reference rocks BCR-1, BHVO-1, AGV-1, G-2 and BCR-2 all showed count rate reductions for 36 elements (mass range 7Li to 238U) averaging ~10% but with no dependence on isotope mass. Use of an internal standard (103Rh) and/or using a ten-fold dilution of sample solutions reduced these effects but problems with reduced count rates combined with larger errors for some elements introduced other problems. The best approach was to normalise the count rates for each element in the other samples against those for BCR-1 as an external standard;thus the count suppression due to the matrix effect is corrected for each individual element. This approach provides standardization “traceability” in line with the ERM ISO/IEC requirement. Experiments are also reported on quantifying the proportions of Ba and selected REE oxide/hydroxide components versus parent isotopes (XO/X and XOH/X). This information is essential for correcting peak interferences on higher mass number REE for the rock samples, and equations are developed to use measured CeO/Ce and CeOH/Ce ratios to predict such values for any other member of the REE suite. Concentrations obtained show excellent agreement with recommended values for the international reference materials especially for the REE. Robust data are also provided for two other standard rocks: nepheline syenite STM-1 and quartz syenite CAAS-1;the latter shows exceptional enrichments of Zr, REE, Th, and U.展开更多
Driving safety field(DSF) model has been proposed to represent comprehensive driving risk formed by interactions of driver-vehicle-road in mixed traffic environment. In this work, we establish an optimization model ba...Driving safety field(DSF) model has been proposed to represent comprehensive driving risk formed by interactions of driver-vehicle-road in mixed traffic environment. In this work, we establish an optimization model based on grey relation degree analysis to calibrate risk coefficients of DSF model. To solve the optimum solution, a genetic algorithm is employed. Finally, the DSF model is verified through a real-world driving experiment. Results show that the DSF model is consistent with driver's hazard perception and more sensitive than TTC. Moreover, the proposed DSF model offers a novel way for criticality assessment and decision-making of advanced driver assistance systems and intelligent connected vehicles.展开更多
For precise and accurate patient dose delivery,the dosimetry system must be calibrated properly according to the recommendations of standard dosimetry protocols such as TG-51 and TRS-398. However, the dosimetry protoc...For precise and accurate patient dose delivery,the dosimetry system must be calibrated properly according to the recommendations of standard dosimetry protocols such as TG-51 and TRS-398. However, the dosimetry protocol followed by a calibration laboratory is usually different from the protocols that are followed by different clinics, which may result in variations in the patient dose.Our prime objective in this study was to investigate the effect of the two protocols on dosimetry measurements.Dose measurements were performed for a Co-60 teletherapy unit and a high-energy Varian linear accelerator with 6 and 15 MV photon and 6, 9, 12, and 15 MeV electron beams, following the recommendations and procedures of the AAPM TG-51 and IAEA TRS-398 dosimetry protocols. The dosimetry systems used for this study were calibrated in a Co-60 radiation beam at the Secondary Standard Dosimetry Laboratory(SSDL) PINSTECH,Pakistan, following the IAEA TRS-398 protocol. The ratio of the measured absorbed doses to water in clinical setting,D_w(TG-51/TRS-398), was 0.999 and 0.997 for 6 and15 MV photon beams,whereas these ratios were 1.013,1.009, 1.003, and 1.000 for 6, 9, 12, and 15 MeV electron beams, respectively. This difference in the absorbed dosesto-water D_w ratio may be attributed mainly due to beam quality(K_Q) and ion recombination correction factor.展开更多
We study a general framework for assessing the injury probability corresponding to an input dose quantity. In many applications, the true value of input dose may not be directly measurable. Instead, the input dose is ...We study a general framework for assessing the injury probability corresponding to an input dose quantity. In many applications, the true value of input dose may not be directly measurable. Instead, the input dose is estimated from measurable/controllable quantities via numerical simulations using assumed representative parameter values. We aim at developing a simple modeling framework for accommodating all uncertainties, including the discrepancy between the estimated input dose and the true input dose. We first interpret the widely used logistic dose-injury model as the result of dose propagation uncertainty from input dose to target dose at the active site for injury where the binary outcome is completely determined by the target dose. We specify the symmetric logistic dose-injury function using two shape parameters: the median injury dose and the 10 - 90 percentile width. We relate the two shape parameters of injury function to the mean and standard deviation of the dose propagation uncertainty. We find 1) a larger total uncertainty will spread more the dose-response function, increasing the 10 - 90 percentile width and 2) a systematic over-estimate of the input dose will shift the injury probability toward the right along the estimated input dose. This framework provides a way of revising an established injury model for a particular test population to predict the injury model for a new population with different distributions of parameters that affect the dose propagation and dose estimation. In addition to modeling dose propagation uncertainty, we propose a new 3-parameter model to include the skewness of injury function. The proposed 3-parameter function form is based on shifted log-normal distribution of dose propagation uncertainty and is approximately invariant when other uncertainties are added. The proposed 3-parameter function form provides a framework for extending skewed injury model from a test population to a target population in application.展开更多
Hearing loss is a common military health problem and it is closely related to exposures to impulse noises from blast explosions and weapon firings. In a study based on test data of chinchillas and scaled to humans (Mi...Hearing loss is a common military health problem and it is closely related to exposures to impulse noises from blast explosions and weapon firings. In a study based on test data of chinchillas and scaled to humans (Military Medicine, 181: 59-69), an empirical injury model was constructed for exposure to multiple sound impulses of equal intensity. Building upon the empirical injury model, we conduct a mathematical study of the hearing loss injury caused by multiple impulses of non-uniform intensities. We adopt the theoretical framework of viewing individual sound exposures as separate injury causing events, and in that framework, we examine synergy for causing injury (fatigue) or negative synergy (immunity) or independence among a sequence of doses. Starting with the empirical logistic dose-response relation and the empirical dose combination rule, we show that for causing injury, a sequence of sound exposure events are not independent of each other. The phenomenological effect of a preceding event on the subsequent event is always immunity. We extend the empirical dose combination rule, which is applicable only in the case of homogeneous impulses of equal intensity, to accommodate the general case of multiple heterogeneous sound exposures with non-uniform intensities. In addition to studying and extending the empirical dose combination rule, we also explore the dose combination rule for the hypothetical case of independent events, and compare it with the empirical one. We measure the effect of immunity quantitatively using the immunity factor defined as the percentage of decrease in injury probability attributed to the sound exposure in the preceding event. Our main findings on the immunity factor are: 1) the immunity factor is primarily a function of the difference in SELA (A- weighted sound exposure level) between the two sound exposure events;it is virtually independent of the magnitude of the two SELA values as long as the difference is fixed;2) the immunity factor increases monotonically from 0 to 100% as the first dose is varied from being significantly below the second dose, to being moderately above the second dose. The extended dose-response formulation developed in this study provides a theoretical framework for assessing the injury risk in realistic situations.展开更多
Background: Chronic kidney disease patients are at a greater risk for nephropathy requiring dialysis after percutaneous coronary intervention. Such patients are usually deferred due to fear of “Renalism”.?Objectives...Background: Chronic kidney disease patients are at a greater risk for nephropathy requiring dialysis after percutaneous coronary intervention. Such patients are usually deferred due to fear of “Renalism”.?Objectives This study assesses the outcome of Low dose contrast protocol during PCI in CKD patients whose e-GFR 60 ml/min/1.72 m and investigates a safety margin for contrast use in these high-risk categories.?Methods: Patients were into three groups according to CV/e-GFR ratio: Group (A) low-dose: CV/e-GFR ratio 2.0 Group (B) medium-dose: CV/e-GFR ratio > 2.0 and × bodyweight\s.creatinine). Group (C) high-dose: CV/e-GFR ratio > MACD. Results: A total of 73 patients were enrolled. Average age was 54 ± 8 years,81.4% were male and 18.6% were females and 52% were diabetic. Mean baseline e-GFR was 40 ± 8.0 ml/min/1.73m2. Contrast Volume used in group A was (58.26 ± 15.05) (n = 24), in group B (109.42 ± 17.11) (n = 26) and in group C (304.5 ± 60.30) (n = 23), respectively. The incidences of CI-AKI in the 3 groups were 0%, 11.5% and 35%, respectively (p = 0.02). All-cause death 0%, 17% and introduction of maintenance hemo dialysis was 0%, 11.5% and 26%, respectively (p Conclusion: Low dose contrast protocol is safe, effective and easily applicable technique without CI-AKI or death.展开更多
Somina (herbal preparation) prepared by Hamdard Laboratories (Waqf) Pakistan is a mixture of five different medicinal plants, widely prescribed for the treatment of mental illness. For acute toxicity, the Karber arith...Somina (herbal preparation) prepared by Hamdard Laboratories (Waqf) Pakistan is a mixture of five different medicinal plants, widely prescribed for the treatment of mental illness. For acute toxicity, the Karber arithmetic method for the calculation of LD50 and Hodge and Sterner toxicity scale was used. In this study, different doses (10, 100, 285, 500, 1000, 5000 and 10,000 mg/kg) of the extract was administered orally to the different groups of rats and mice. Signs of toxicity and possible death of animals were monitored for 24 hrs to calculate the median lethal dose (LD50) of somina. At the end of the study, all the animals in all the dose groups were sacrificed and the internal organ-body was compared with values from the control group. The LD50 was found to be >10,000 mg/kg body weight upon oral administration in mice and rats as no mortality was observed after single dose administration. According to Hodge and Sterner toxicity scale, the obtained value of LD 50 > 10,000 mg/kg classified the Somina as Practically non-toxic herbal medicine.展开更多
Radiation detectors, such as survey meters, are essential for ensuring radiation safety in various sectors, including healthcare, industrial processing, emergency response, etc. However, regular calibration and proper...Radiation detectors, such as survey meters, are essential for ensuring radiation safety in various sectors, including healthcare, industrial processing, emergency response, etc. However, regular calibration and proper maintenance of survey meters are important in order to ascertain their accuracy and reliability. This study provides a comprehensive retrospective assessment of the calibration behaviour, durability, and fault trends of 160 survey meters, spanning ten different models. They were calibrated at the Secondary Standard Dosimetry Laboratory (SSDL) in Nigeria over a decade (2012-2023) using an X-Ray Beam Irradiator Model X80-225K and Cs-137 irradiator (OB6) with a PTW reference spherical chamber traceable to the IAEA SSDL in Seibersdorf, Austria. The calibration stability of each model was evaluated, revealing that models like Instrument A and Instrument B demonstrated high reliability with calibration factors close to the ideal value of 1, while models like Instrument C exhibited higher variability, suggesting less consistent performance for dose rate monitoring. Fault analysis showed that the most common issues were related to the battery compartment, indicating a need for improved handling practices. Correlation analysis reveals no statistically significant correlation between calibration factor and age of survey meter across the analysed models. The study concludes that regular calibration, proper handling, and user training are crucial for maintaining the accuracy and longevity of radiation detectors.展开更多
The response and performance of radiation detectors for accurate measurements and effective use for radiological safety in medical, industrial, and nuclear sectors are based on the optimal use, maintenance, repair and...The response and performance of radiation detectors for accurate measurements and effective use for radiological safety in medical, industrial, and nuclear sectors are based on the optimal use, maintenance, repair and calibration of radiation monitoring instruments in a secondary standard dosimetry laboratory. In Nigeria, the suboptimal performances of these instruments are attributed to inadequate maintenance practices, insufficient calibration, and limited awareness of proper equipment handling for optimal use. This study assesses the current practices related to the optimal use, maintenance, repair, and calibration of radiation detection equipment across Nigeria’s six geopolitical zones. Using a cross-sectional survey approach, data were collected from Ninety (90) radiation monitoring equipment operators, Radiation Safety Officers, and frontline responders to evaluate their knowledge, awareness, and practices concerning equipment usage, operation, storage, handling, and calibration. The findings reveal significant gaps in knowledge of usage (trained is 43.2%, not trained is 56.8%) and inconsistencies in maintenance practices (as indicated by the regression analysis (β = 0.51, p < 0.01), particularly regarding specialized instruments such as the PackEye, Mobile Detection System (MDS), Radionuclide Identifinder (RID), and Personal Radiation Detectors (PRD). While there is high awareness of the need for regular calibration and handling training, the lack of standardized protocols and training alignment poses challenges to the effective use of these instruments. This study underscores the importance of comprehensive training programs, standardized maintenance protocols, and enhanced awareness initiatives to optimize the usage, performance and safety of radiation monitoring instruments in Nigeria.展开更多
Objective This study aimed to compare and analyze the clinical efficacy and safety of late-course and simultaneous integrated dose-increasing intensity-modulated radiation therapy(IMRT) for cervical cancer complicated...Objective This study aimed to compare and analyze the clinical efficacy and safety of late-course and simultaneous integrated dose-increasing intensity-modulated radiation therapy(IMRT) for cervical cancer complicated with pelvic lymph node metastasis. Methods Sixty patients with cervical cancer complicated with pelvic lymph node metastasis who were admitted to our hospital from January 2013 to January 2015 were enrolled. The patients were randomly divided into the late-course dose-increasing IMRT group and the simultaneous integrated dose-increasing IMRT group, with 30 cases included in each group, respectively. All patients were concurrently treated with cisplatin. After treatment, the clinical outcomes of the two groups were compared. Results The remission rate of symptoms in the simultaneous integrated dose-increasing IMRT group was significantly higher than that in the late-course dose-increasing IMRT group(P < 0.05). The follow-up results showed that the overall survival time, progression-free survival time, and distant metastasis time of patients in the simultaneous integrated dose-increasing IMRT group were significantly longer than those in the late-course dose-increasing IMRT group(P < 0.05). The recurrent rate of lymph nodes in the radiation field in the simultaneous integrated dose-increasing IMRT group was significantly lower(P < 0.05) than in the late-course dose-increasing IMRT group. There was no significant difference in the incidence of cervical and vaginal recurrence and distant metastasis between the two groups(P > 0.05). The radiation doses of Dmax in the small intestine, D1 cc(the minimum dose to the 1 cc receiving the highest dose) in the bladder, and Dmax in the rectum in the simultaneous integrated dose-increasing IMRT group were significantly lower(P < 0.05) than in the late-course dose-increasing IMRT group. There was no significant difference in intestinal D2 cc(the minimum dose to the 2 cc receiving the highest dose) between the two groups(P > 0.05). The incidence of bone marrow suppression in the simultaneous integrated dose-increasing IMRT group was significantly lower(P < 0.05) than in the late-course dose-increasing IMRT group.Conclusion The application of simultaneous integrated dose-increasing IMRT in the treatment of cervical cancer patients complicated with pelvic lymph node metastasis can significantly control tumor progression, improve the long-term survival time, and postpone distant metastasis time with high safety.展开更多
The Gompertz model is the long-time well-known mathematical model of exponential expression among mortality models in the literature that are used to describe mortality and survival data of a population. The death rat...The Gompertz model is the long-time well-known mathematical model of exponential expression among mortality models in the literature that are used to describe mortality and survival data of a population. The death rate of the “probacent” model developed by the author based on animal experiments, clinical applications and mathematical reasoning was applied to predict age-specific death rates in the US elderly population, 2001, and to express a relationship among dose rate, duration of exposure and mortality probability in total body irradiation in humans. The results of both studies revealed a remarkable agreement between “probacent”-formula-predicted and published-reported values of death rates in the US elderly population or mortality probabilities in total body irradiation in humans (p - value > 0.995 in χ2 test in each study). In this study, both the Gompertz and “probacent” models are applied to the Sacher’s comprehensive experimental data on survival times of mice daily exposed to various doses of total body irradiation until death occurs with an assumption that each of both models is applicable to the data. The purpose of this study is to construct general formulas expressing relationship between dose rate and survival time in total body irradiation in mice. In addition, it is attempted to test which model better fits the reported data. The results of the comparative study revealed that the “probacent” model not only fit the Sacher’s reported data but also remarkably better fit the reported data than the Gompertz model. The “probacent” model might be hopefully helpful in research in human tolerance to low dose rates for long durations of exposure in total body irradiation, and further in research in a variety of biomedical phenomena.展开更多
The performance on prediction by mathematical models which represent the conceived image of a system such as hydrology is oftentimes represented through calibration and verification processes. Oftentimes a best fit be...The performance on prediction by mathematical models which represent the conceived image of a system such as hydrology is oftentimes represented through calibration and verification processes. Oftentimes a best fit between observed and predicted flows is obtained through correlation coefficient (R2) and the Nash Sutcliffe model efficiency (NSE) by minimizing the average Root Mean Square Error (RMSE) of the observed versus simulated flows. However, these days, a new paradigm is emerging wherein accounting for the flow variability for the protection of freshwater biodiversity and maintenance of goods and services that rivers provide is paramount. Therefore, from an ecohydrology perspective, it is not clear if the existing method of model calibration meets the needs of the riverine ecosystem at its best. Thus, this study investigates and proposes a methodology using entropy theory to gage the calibration of Soil and Water Assessment Tool (SWAT) from an ecohydrology perspective characterized by the natural flow-regime paradigm: Indicators of Hydrologic Alteration.展开更多
The radioactivity measurements in food crops and their diet derivatives and farm soil samples from Abeokuta, one of the elevated background radiation areas in Nigeria have been carried out in order to determine the co...The radioactivity measurements in food crops and their diet derivatives and farm soil samples from Abeokuta, one of the elevated background radiation areas in Nigeria have been carried out in order to determine the concentration levels of natural radionuclides (40K, 226Ra and 232Th). The activity concentrations of the natural radionuclides in the samples were determined via gamma-ray spectrometry using a 76 mm × 76 mm NaI(Tl) detector. Different common food crops representing the major sources of dietary requirements to the local population were collected for the measurements. The collected food crops were prepared into their different derivable composite diets using preparation techniques locale to the population. Using available food consumption data and the activity concentrations of the radionuclides, the ingestion effective doses were evaluated for the food crops and diet types per preparation techniques. For the tuberous food crop samples, the annual ingestion effective doses in the raw and different composite diets were 0.02 - 0.04 μSv and cumulatively 0.04 - 0.05 μSv while in the non-tuberous crops the doses were 0.44 - 0.70 μSv and cumulatively greater than 1 μSv respectively. Results of the study indicate that method of diet preparation is seen to play a major role in population ingestion dose reduction especially for tuberous crops than in non-tuberous crops. The study also showed that more ingestion dose could be incurred in diets prepared by roasting techniques. The result of the study will serve as a useful radiometric data for future epidemiological studies in the area and for food safety regulations and policy implementations in the country.展开更多
With respect to the gamma spectrum, the energy resolution improves with increase in energy. The counts of full energy peak change with energy, and this approximately complies with the Gaussian distribution. This study...With respect to the gamma spectrum, the energy resolution improves with increase in energy. The counts of full energy peak change with energy, and this approximately complies with the Gaussian distribution. This study mainly examines a method to deconvolve the LaBr_3:Ce gamma spectrum with a detector response matrix constructing algorithm based on energy resolution calibration.In the algorithm, the full width at half maximum(FWHM)of full energy peak was calculated by the cubic spline interpolation algorithm and calibrated by a square root of a quadratic function that changes with the energy. Additionally, the detector response matrix was constructed to deconvolve the gamma spectrum. Furthermore, an improved SNIP algorithm was proposed to eliminate the background. In the experiment, several independent peaks of ^(152)Eu,^(137)Cs, and ^(60)Co sources were detected by a LaBr_3:Ce scintillator that were selected to calibrate the energy resolution. The Boosted Gold algorithm was applied to deconvolve the gamma spectrum. The results showed that the peak position difference between the experiment and the deconvolution was within ± 2 channels and the relative error of peak area was approximately within 0.96–6.74%. Finally, a ^(133) Ba spectrum was deconvolved to verify the efficiency and accuracy of the algorithm in unfolding the overlapped peaks.展开更多
A land surface region can be decomposed into a series of watershed units with a hierarchical organizational structure. For loess landform, the watershed is a basic spatial–structural unit that can express natural lan...A land surface region can be decomposed into a series of watershed units with a hierarchical organizational structure. For loess landform, the watershed is a basic spatial–structural unit that can express natural landforms, surface morphology characteristics, spatial organization and developmental evolution. In this research we adopted the concept of node calibration in the watershed structure unit, selected six complete watersheds on China Loess Plateau as the research areas to study the quantitative characteristics of the hierarchical structure in terms of watershed geomorphology based on digital elevation model(DEM) data, and then built a watershed hierarchical structure model that relies on gully structure feature points. We calculated the quantitative indices, such as elevation, flow accumulation and hypsometric integral and found there are remarkably closer linear correlation between flow accumulation and elevation with increasing gully order, and the same variation tendency of hypsometric integral also presented. The results showed that the characteristics of spatial structure become more stable, and the intensity of spatial aggregation gradually enhances with increasing gully order. In summary, from the view of gully node calibration, the China Loess watershed structure shows more significantly complex, and the developmental situation variation of the loess landforms also exhibited a fairly stable status with gully order increasing. So, the loess watershed structure and its changes constructed the complex system of the loess landform, and it has the great significance for studying the spatial pattern and evolution law of the watershed geomorphology.展开更多
将粒子群优化(PSO)算法与BP神经网络相结合,应用在传感器静态非线性特性的校正中.用PSO算法所得到的全局最优值作为BP神经网络的初始权值,训练BP神经网络,训练结束后的神经网络作为传感器的静态特性校正器.应用结果表明,该方法可以提高B...将粒子群优化(PSO)算法与BP神经网络相结合,应用在传感器静态非线性特性的校正中.用PSO算法所得到的全局最优值作为BP神经网络的初始权值,训练BP神经网络,训练结束后的神经网络作为传感器的静态特性校正器.应用结果表明,该方法可以提高BP神经网络的精度,并且该神经网络具有良好的泛化能力.
Abstract:
A static nonlinear errors method for correcting the sensors based on BP neural network using particle swarm optimization (PSO) is described. The global best values of particle swarm are used as initial weights of BP neural network to train BP neural network. Then the trained neural network is regarded as the sensor's corrector. The application results show that this method can improve the precision of the BP neural network, and the generalization capability of the neural network is good.展开更多
Over the past several years,advances in the technical domain of computed tomography(CT) have influenced the trend of imaging modalities used in the clinical evaluation of the urinary system.Renal collecting systems ca...Over the past several years,advances in the technical domain of computed tomography(CT) have influenced the trend of imaging modalities used in the clinical evaluation of the urinary system.Renal collecting systems can be illustrated more precisely with the advent of multi-detector row CT through thinner slices,high speed acquisitions,and enhanced longitudinal spatial resolution resulting in improved reformatted coronal images.On the other hand,a significant increase in exposure to ionizing radiation,especially in the radiosensitive organs,such as the gonads,is a concern with the increased utilization of urinary tract CT.In this article,we discuss the strategies and techniques availablefor reducing radiation dose for a variety of urinary tractCT protocols with metabolic clinical examples.We also reviewed CT for hematuria evaluation and related scan parameter optimization such as,reducing the number of acquisition phases,CT angiography of renal donors and lowering tube potential,when possible.展开更多
We consider the problem of assessing bone fracture risk for a subject hit by a blunt impact projectile. We aim at constructing a framework for integrating test data and Advanced Total Body Model (ATBM) simulations int...We consider the problem of assessing bone fracture risk for a subject hit by a blunt impact projectile. We aim at constructing a framework for integrating test data and Advanced Total Body Model (ATBM) simulations into the risk assessment. The ATBM is a finite element model managed by the Joint Non-Lethal Weapons Directorate for the purpose of assessing the risk of injury caused by blunt impacts from non-lethal weapons. In ATBM simulations, the quantity that determines arm bone fracture is the calculated maximum strain in the bone. The main obstacle to accurate prediction is that the calculated strain is incompatible with the measured strain. The fracture strain measured in bending tests of real bones is affected by random inhomogeneity in bones and uncertainty in measurement gauge attachment location/orientation. In contrast, the strain calculated in ATBM simulations is based on the assumption that all bones are perfectly elastic with homogeneous material properties and no measurement uncertainty. To connect test data and ATBM simulations in a proper and meaningful setting, we introduce the concept of elasticity-homogenized strain. We interpret test data in terms of the homogenized strain, and build an empirical dose-injury model with the homogenized strain as the input dose for predicting injury. The maximum strain calculated by ATBM has randomness due to uncertainty in specifications of ATBM setup parameters. The dose propagation uncertainty formulation accommodates this uncertainty efficiently by simply updating the shape parameters in the dose-injury model, avoiding the high computational cost of sampling this uncertainty via multiple ATBM runs.展开更多
This work investigated the absorbed dose to water rate under reference conditions in a Cyberknife VSI system using radiochromic films EBT3 and MD-V3 and three ionization chambers: an Exradin A12 and two FC65P Welh&...This work investigated the absorbed dose to water rate under reference conditions in a Cyberknife VSI system using radiochromic films EBT3 and MD-V3 and three ionization chambers: an Exradin A12 and two FC65P Welhöfer Scanditronix with different serial numbers. The correction factor,, was studied using a Varian iX linac and the Cyberknife system. The measurements in the Varian iX were performed in a 10 × 10 cm2 field, 10 cm depth in liquid water at 90 cm and 70 cm SSD and in a 5.4 × 5.4 cm2 field, 10 cm depth at 70 cm SSD to simulate the Cyberknife conditions. In the Cyberknife system, measurements were performed using ionization chambers and both film types at 70 cm SSD and 10 cm depth in its 6 cm diameter reference field. The results indicate that ?is independent of the dosimeters and the evaluation methods. Maximum differences of 0.22% - 0.55% (combined uncertainties of 1.22% - 1.98%, k = 1) are obtained on ?using Varian iX, whereas discrepancies of 2.08% - 2.09% (combined uncertainties of 1.87% - 2.13%, k = 1) are observed using the Cyberknife system. Given the agreement between detectors and the combined standard uncertainties, the data from Varian iX could be considered the most accurate and consequently a weighted average factor of 0.902 ± 0.006 could be used for the Cyberknife VSI system reference field. Within measurement uncertainties, the absorbed dose rate measured in the Cyberknife VSI system reference field was found to be independent of the dosimeters used. These results suggest that the absorbed dose measured at a point within a given field size should be the same, regardless the dosimeter used, if their dosimetric characteristics are well known. This highlighted the importance of performing dosimetry by controlling all parameters that could affect the dosimeter response. One can conclude that radiochromic film dosimetry can be considered as an appropriate alternative for measuring absorbed dose to water rate.展开更多
AIM:To evaluate impact of radiation therapy dose escalation through intensity modulated radiation therapy with simultaneous integrated boost(IMRT-SIB).METHODS:We retrospectively reviewed the patients who underwent fou...AIM:To evaluate impact of radiation therapy dose escalation through intensity modulated radiation therapy with simultaneous integrated boost(IMRT-SIB).METHODS:We retrospectively reviewed the patients who underwent four-dimensional-based IMRT-SIBbased neoadjuvant chemoradiation protocol.During the concurrent chemoradiation therapy,radiation therapy was through IMRT-SIB delivered in 28 consecutive daily fractions with total radiation doses of 56 Gy to tumor and 5040 Gy dose-painted to clinical tumor volume,with a regimen at the discretion of the treating medical oncologist.This was followed by surgical tumor resection.We analyzed pathological completion response(p CR) rates its relationship with overall survival and event-freesurvival.RESULTS:Seventeen patients underwent dose escalation with the IMRT-SIB protocol between 2007 and 2014 and their records were available for analysis.Among the IMRT-SIB-treated patients,the toxicity appeared mild,the most common side effects were grade 1-3 esophagitis(46%) and pneumonitis(11.7%).There were no cardiac events.The Ro resection rate was 94%(n = 16),the p CR rate was 47%(n = 8),and the postoperative morbidity was zero.There was one mediastinal failure found,one patient had local failure at the anastomosis site,and the majority of failures were distant in the lung or bone.The 3-year diseasefree survival and overall survival rates were 41%(n = 7) and 53%(n = 9),respectively.CONCLUSION:The dose escalation through IMRT-SIB in the chemoradiation regimen seems responsible for down-staging the distal esophageal with well-tolerated complications.展开更多
文摘Operating an Agilent 7700X ICP-MS spectrometer under robust plasma conditions (1550 W) with a He-filled octopole collision cell and analysing solutions (?1 total dissolved solids) still suffered analyte peak suppression due to matrix effects. International reference rocks BCR-1, BHVO-1, AGV-1, G-2 and BCR-2 all showed count rate reductions for 36 elements (mass range 7Li to 238U) averaging ~10% but with no dependence on isotope mass. Use of an internal standard (103Rh) and/or using a ten-fold dilution of sample solutions reduced these effects but problems with reduced count rates combined with larger errors for some elements introduced other problems. The best approach was to normalise the count rates for each element in the other samples against those for BCR-1 as an external standard;thus the count suppression due to the matrix effect is corrected for each individual element. This approach provides standardization “traceability” in line with the ERM ISO/IEC requirement. Experiments are also reported on quantifying the proportions of Ba and selected REE oxide/hydroxide components versus parent isotopes (XO/X and XOH/X). This information is essential for correcting peak interferences on higher mass number REE for the rock samples, and equations are developed to use measured CeO/Ce and CeOH/Ce ratios to predict such values for any other member of the REE suite. Concentrations obtained show excellent agreement with recommended values for the international reference materials especially for the REE. Robust data are also provided for two other standard rocks: nepheline syenite STM-1 and quartz syenite CAAS-1;the latter shows exceptional enrichments of Zr, REE, Th, and U.
基金Projects(51475254,51625503)supported by the National Natural Science Foundation of ChinaProject(MCM20150302)supported by the Joint Project of Tsinghua and China Mobile,ChinaProject supported by the joint Project of Tsinghua and Daimler Greater China Ltd.,Beijing,China
文摘Driving safety field(DSF) model has been proposed to represent comprehensive driving risk formed by interactions of driver-vehicle-road in mixed traffic environment. In this work, we establish an optimization model based on grey relation degree analysis to calibrate risk coefficients of DSF model. To solve the optimum solution, a genetic algorithm is employed. Finally, the DSF model is verified through a real-world driving experiment. Results show that the DSF model is consistent with driver's hazard perception and more sensitive than TTC. Moreover, the proposed DSF model offers a novel way for criticality assessment and decision-making of advanced driver assistance systems and intelligent connected vehicles.
文摘For precise and accurate patient dose delivery,the dosimetry system must be calibrated properly according to the recommendations of standard dosimetry protocols such as TG-51 and TRS-398. However, the dosimetry protocol followed by a calibration laboratory is usually different from the protocols that are followed by different clinics, which may result in variations in the patient dose.Our prime objective in this study was to investigate the effect of the two protocols on dosimetry measurements.Dose measurements were performed for a Co-60 teletherapy unit and a high-energy Varian linear accelerator with 6 and 15 MV photon and 6, 9, 12, and 15 MeV electron beams, following the recommendations and procedures of the AAPM TG-51 and IAEA TRS-398 dosimetry protocols. The dosimetry systems used for this study were calibrated in a Co-60 radiation beam at the Secondary Standard Dosimetry Laboratory(SSDL) PINSTECH,Pakistan, following the IAEA TRS-398 protocol. The ratio of the measured absorbed doses to water in clinical setting,D_w(TG-51/TRS-398), was 0.999 and 0.997 for 6 and15 MV photon beams,whereas these ratios were 1.013,1.009, 1.003, and 1.000 for 6, 9, 12, and 15 MeV electron beams, respectively. This difference in the absorbed dosesto-water D_w ratio may be attributed mainly due to beam quality(K_Q) and ion recombination correction factor.
文摘We study a general framework for assessing the injury probability corresponding to an input dose quantity. In many applications, the true value of input dose may not be directly measurable. Instead, the input dose is estimated from measurable/controllable quantities via numerical simulations using assumed representative parameter values. We aim at developing a simple modeling framework for accommodating all uncertainties, including the discrepancy between the estimated input dose and the true input dose. We first interpret the widely used logistic dose-injury model as the result of dose propagation uncertainty from input dose to target dose at the active site for injury where the binary outcome is completely determined by the target dose. We specify the symmetric logistic dose-injury function using two shape parameters: the median injury dose and the 10 - 90 percentile width. We relate the two shape parameters of injury function to the mean and standard deviation of the dose propagation uncertainty. We find 1) a larger total uncertainty will spread more the dose-response function, increasing the 10 - 90 percentile width and 2) a systematic over-estimate of the input dose will shift the injury probability toward the right along the estimated input dose. This framework provides a way of revising an established injury model for a particular test population to predict the injury model for a new population with different distributions of parameters that affect the dose propagation and dose estimation. In addition to modeling dose propagation uncertainty, we propose a new 3-parameter model to include the skewness of injury function. The proposed 3-parameter function form is based on shifted log-normal distribution of dose propagation uncertainty and is approximately invariant when other uncertainties are added. The proposed 3-parameter function form provides a framework for extending skewed injury model from a test population to a target population in application.
文摘Hearing loss is a common military health problem and it is closely related to exposures to impulse noises from blast explosions and weapon firings. In a study based on test data of chinchillas and scaled to humans (Military Medicine, 181: 59-69), an empirical injury model was constructed for exposure to multiple sound impulses of equal intensity. Building upon the empirical injury model, we conduct a mathematical study of the hearing loss injury caused by multiple impulses of non-uniform intensities. We adopt the theoretical framework of viewing individual sound exposures as separate injury causing events, and in that framework, we examine synergy for causing injury (fatigue) or negative synergy (immunity) or independence among a sequence of doses. Starting with the empirical logistic dose-response relation and the empirical dose combination rule, we show that for causing injury, a sequence of sound exposure events are not independent of each other. The phenomenological effect of a preceding event on the subsequent event is always immunity. We extend the empirical dose combination rule, which is applicable only in the case of homogeneous impulses of equal intensity, to accommodate the general case of multiple heterogeneous sound exposures with non-uniform intensities. In addition to studying and extending the empirical dose combination rule, we also explore the dose combination rule for the hypothetical case of independent events, and compare it with the empirical one. We measure the effect of immunity quantitatively using the immunity factor defined as the percentage of decrease in injury probability attributed to the sound exposure in the preceding event. Our main findings on the immunity factor are: 1) the immunity factor is primarily a function of the difference in SELA (A- weighted sound exposure level) between the two sound exposure events;it is virtually independent of the magnitude of the two SELA values as long as the difference is fixed;2) the immunity factor increases monotonically from 0 to 100% as the first dose is varied from being significantly below the second dose, to being moderately above the second dose. The extended dose-response formulation developed in this study provides a theoretical framework for assessing the injury risk in realistic situations.
文摘Background: Chronic kidney disease patients are at a greater risk for nephropathy requiring dialysis after percutaneous coronary intervention. Such patients are usually deferred due to fear of “Renalism”.?Objectives This study assesses the outcome of Low dose contrast protocol during PCI in CKD patients whose e-GFR 60 ml/min/1.72 m and investigates a safety margin for contrast use in these high-risk categories.?Methods: Patients were into three groups according to CV/e-GFR ratio: Group (A) low-dose: CV/e-GFR ratio 2.0 Group (B) medium-dose: CV/e-GFR ratio > 2.0 and × bodyweight\s.creatinine). Group (C) high-dose: CV/e-GFR ratio > MACD. Results: A total of 73 patients were enrolled. Average age was 54 ± 8 years,81.4% were male and 18.6% were females and 52% were diabetic. Mean baseline e-GFR was 40 ± 8.0 ml/min/1.73m2. Contrast Volume used in group A was (58.26 ± 15.05) (n = 24), in group B (109.42 ± 17.11) (n = 26) and in group C (304.5 ± 60.30) (n = 23), respectively. The incidences of CI-AKI in the 3 groups were 0%, 11.5% and 35%, respectively (p = 0.02). All-cause death 0%, 17% and introduction of maintenance hemo dialysis was 0%, 11.5% and 26%, respectively (p Conclusion: Low dose contrast protocol is safe, effective and easily applicable technique without CI-AKI or death.
文摘Somina (herbal preparation) prepared by Hamdard Laboratories (Waqf) Pakistan is a mixture of five different medicinal plants, widely prescribed for the treatment of mental illness. For acute toxicity, the Karber arithmetic method for the calculation of LD50 and Hodge and Sterner toxicity scale was used. In this study, different doses (10, 100, 285, 500, 1000, 5000 and 10,000 mg/kg) of the extract was administered orally to the different groups of rats and mice. Signs of toxicity and possible death of animals were monitored for 24 hrs to calculate the median lethal dose (LD50) of somina. At the end of the study, all the animals in all the dose groups were sacrificed and the internal organ-body was compared with values from the control group. The LD50 was found to be >10,000 mg/kg body weight upon oral administration in mice and rats as no mortality was observed after single dose administration. According to Hodge and Sterner toxicity scale, the obtained value of LD 50 > 10,000 mg/kg classified the Somina as Practically non-toxic herbal medicine.
文摘Radiation detectors, such as survey meters, are essential for ensuring radiation safety in various sectors, including healthcare, industrial processing, emergency response, etc. However, regular calibration and proper maintenance of survey meters are important in order to ascertain their accuracy and reliability. This study provides a comprehensive retrospective assessment of the calibration behaviour, durability, and fault trends of 160 survey meters, spanning ten different models. They were calibrated at the Secondary Standard Dosimetry Laboratory (SSDL) in Nigeria over a decade (2012-2023) using an X-Ray Beam Irradiator Model X80-225K and Cs-137 irradiator (OB6) with a PTW reference spherical chamber traceable to the IAEA SSDL in Seibersdorf, Austria. The calibration stability of each model was evaluated, revealing that models like Instrument A and Instrument B demonstrated high reliability with calibration factors close to the ideal value of 1, while models like Instrument C exhibited higher variability, suggesting less consistent performance for dose rate monitoring. Fault analysis showed that the most common issues were related to the battery compartment, indicating a need for improved handling practices. Correlation analysis reveals no statistically significant correlation between calibration factor and age of survey meter across the analysed models. The study concludes that regular calibration, proper handling, and user training are crucial for maintaining the accuracy and longevity of radiation detectors.
文摘The response and performance of radiation detectors for accurate measurements and effective use for radiological safety in medical, industrial, and nuclear sectors are based on the optimal use, maintenance, repair and calibration of radiation monitoring instruments in a secondary standard dosimetry laboratory. In Nigeria, the suboptimal performances of these instruments are attributed to inadequate maintenance practices, insufficient calibration, and limited awareness of proper equipment handling for optimal use. This study assesses the current practices related to the optimal use, maintenance, repair, and calibration of radiation detection equipment across Nigeria’s six geopolitical zones. Using a cross-sectional survey approach, data were collected from Ninety (90) radiation monitoring equipment operators, Radiation Safety Officers, and frontline responders to evaluate their knowledge, awareness, and practices concerning equipment usage, operation, storage, handling, and calibration. The findings reveal significant gaps in knowledge of usage (trained is 43.2%, not trained is 56.8%) and inconsistencies in maintenance practices (as indicated by the regression analysis (β = 0.51, p < 0.01), particularly regarding specialized instruments such as the PackEye, Mobile Detection System (MDS), Radionuclide Identifinder (RID), and Personal Radiation Detectors (PRD). While there is high awareness of the need for regular calibration and handling training, the lack of standardized protocols and training alignment poses challenges to the effective use of these instruments. This study underscores the importance of comprehensive training programs, standardized maintenance protocols, and enhanced awareness initiatives to optimize the usage, performance and safety of radiation monitoring instruments in Nigeria.
文摘Objective This study aimed to compare and analyze the clinical efficacy and safety of late-course and simultaneous integrated dose-increasing intensity-modulated radiation therapy(IMRT) for cervical cancer complicated with pelvic lymph node metastasis. Methods Sixty patients with cervical cancer complicated with pelvic lymph node metastasis who were admitted to our hospital from January 2013 to January 2015 were enrolled. The patients were randomly divided into the late-course dose-increasing IMRT group and the simultaneous integrated dose-increasing IMRT group, with 30 cases included in each group, respectively. All patients were concurrently treated with cisplatin. After treatment, the clinical outcomes of the two groups were compared. Results The remission rate of symptoms in the simultaneous integrated dose-increasing IMRT group was significantly higher than that in the late-course dose-increasing IMRT group(P < 0.05). The follow-up results showed that the overall survival time, progression-free survival time, and distant metastasis time of patients in the simultaneous integrated dose-increasing IMRT group were significantly longer than those in the late-course dose-increasing IMRT group(P < 0.05). The recurrent rate of lymph nodes in the radiation field in the simultaneous integrated dose-increasing IMRT group was significantly lower(P < 0.05) than in the late-course dose-increasing IMRT group. There was no significant difference in the incidence of cervical and vaginal recurrence and distant metastasis between the two groups(P > 0.05). The radiation doses of Dmax in the small intestine, D1 cc(the minimum dose to the 1 cc receiving the highest dose) in the bladder, and Dmax in the rectum in the simultaneous integrated dose-increasing IMRT group were significantly lower(P < 0.05) than in the late-course dose-increasing IMRT group. There was no significant difference in intestinal D2 cc(the minimum dose to the 2 cc receiving the highest dose) between the two groups(P > 0.05). The incidence of bone marrow suppression in the simultaneous integrated dose-increasing IMRT group was significantly lower(P < 0.05) than in the late-course dose-increasing IMRT group.Conclusion The application of simultaneous integrated dose-increasing IMRT in the treatment of cervical cancer patients complicated with pelvic lymph node metastasis can significantly control tumor progression, improve the long-term survival time, and postpone distant metastasis time with high safety.
文摘The Gompertz model is the long-time well-known mathematical model of exponential expression among mortality models in the literature that are used to describe mortality and survival data of a population. The death rate of the “probacent” model developed by the author based on animal experiments, clinical applications and mathematical reasoning was applied to predict age-specific death rates in the US elderly population, 2001, and to express a relationship among dose rate, duration of exposure and mortality probability in total body irradiation in humans. The results of both studies revealed a remarkable agreement between “probacent”-formula-predicted and published-reported values of death rates in the US elderly population or mortality probabilities in total body irradiation in humans (p - value > 0.995 in χ2 test in each study). In this study, both the Gompertz and “probacent” models are applied to the Sacher’s comprehensive experimental data on survival times of mice daily exposed to various doses of total body irradiation until death occurs with an assumption that each of both models is applicable to the data. The purpose of this study is to construct general formulas expressing relationship between dose rate and survival time in total body irradiation in mice. In addition, it is attempted to test which model better fits the reported data. The results of the comparative study revealed that the “probacent” model not only fit the Sacher’s reported data but also remarkably better fit the reported data than the Gompertz model. The “probacent” model might be hopefully helpful in research in human tolerance to low dose rates for long durations of exposure in total body irradiation, and further in research in a variety of biomedical phenomena.
文摘The performance on prediction by mathematical models which represent the conceived image of a system such as hydrology is oftentimes represented through calibration and verification processes. Oftentimes a best fit between observed and predicted flows is obtained through correlation coefficient (R2) and the Nash Sutcliffe model efficiency (NSE) by minimizing the average Root Mean Square Error (RMSE) of the observed versus simulated flows. However, these days, a new paradigm is emerging wherein accounting for the flow variability for the protection of freshwater biodiversity and maintenance of goods and services that rivers provide is paramount. Therefore, from an ecohydrology perspective, it is not clear if the existing method of model calibration meets the needs of the riverine ecosystem at its best. Thus, this study investigates and proposes a methodology using entropy theory to gage the calibration of Soil and Water Assessment Tool (SWAT) from an ecohydrology perspective characterized by the natural flow-regime paradigm: Indicators of Hydrologic Alteration.
文摘The radioactivity measurements in food crops and their diet derivatives and farm soil samples from Abeokuta, one of the elevated background radiation areas in Nigeria have been carried out in order to determine the concentration levels of natural radionuclides (40K, 226Ra and 232Th). The activity concentrations of the natural radionuclides in the samples were determined via gamma-ray spectrometry using a 76 mm × 76 mm NaI(Tl) detector. Different common food crops representing the major sources of dietary requirements to the local population were collected for the measurements. The collected food crops were prepared into their different derivable composite diets using preparation techniques locale to the population. Using available food consumption data and the activity concentrations of the radionuclides, the ingestion effective doses were evaluated for the food crops and diet types per preparation techniques. For the tuberous food crop samples, the annual ingestion effective doses in the raw and different composite diets were 0.02 - 0.04 μSv and cumulatively 0.04 - 0.05 μSv while in the non-tuberous crops the doses were 0.44 - 0.70 μSv and cumulatively greater than 1 μSv respectively. Results of the study indicate that method of diet preparation is seen to play a major role in population ingestion dose reduction especially for tuberous crops than in non-tuberous crops. The study also showed that more ingestion dose could be incurred in diets prepared by roasting techniques. The result of the study will serve as a useful radiometric data for future epidemiological studies in the area and for food safety regulations and policy implementations in the country.
基金supported by the National Natural Science Foundation of China(Nos.41374130 and 41604154)
文摘With respect to the gamma spectrum, the energy resolution improves with increase in energy. The counts of full energy peak change with energy, and this approximately complies with the Gaussian distribution. This study mainly examines a method to deconvolve the LaBr_3:Ce gamma spectrum with a detector response matrix constructing algorithm based on energy resolution calibration.In the algorithm, the full width at half maximum(FWHM)of full energy peak was calculated by the cubic spline interpolation algorithm and calibrated by a square root of a quadratic function that changes with the energy. Additionally, the detector response matrix was constructed to deconvolve the gamma spectrum. Furthermore, an improved SNIP algorithm was proposed to eliminate the background. In the experiment, several independent peaks of ^(152)Eu,^(137)Cs, and ^(60)Co sources were detected by a LaBr_3:Ce scintillator that were selected to calibrate the energy resolution. The Boosted Gold algorithm was applied to deconvolve the gamma spectrum. The results showed that the peak position difference between the experiment and the deconvolution was within ± 2 channels and the relative error of peak area was approximately within 0.96–6.74%. Finally, a ^(133) Ba spectrum was deconvolved to verify the efficiency and accuracy of the algorithm in unfolding the overlapped peaks.
基金supported by the auspices of the National Natural Science Foundation of China (Grant Nos. 41471331, 41601408, 41506111)
文摘A land surface region can be decomposed into a series of watershed units with a hierarchical organizational structure. For loess landform, the watershed is a basic spatial–structural unit that can express natural landforms, surface morphology characteristics, spatial organization and developmental evolution. In this research we adopted the concept of node calibration in the watershed structure unit, selected six complete watersheds on China Loess Plateau as the research areas to study the quantitative characteristics of the hierarchical structure in terms of watershed geomorphology based on digital elevation model(DEM) data, and then built a watershed hierarchical structure model that relies on gully structure feature points. We calculated the quantitative indices, such as elevation, flow accumulation and hypsometric integral and found there are remarkably closer linear correlation between flow accumulation and elevation with increasing gully order, and the same variation tendency of hypsometric integral also presented. The results showed that the characteristics of spatial structure become more stable, and the intensity of spatial aggregation gradually enhances with increasing gully order. In summary, from the view of gully node calibration, the China Loess watershed structure shows more significantly complex, and the developmental situation variation of the loess landforms also exhibited a fairly stable status with gully order increasing. So, the loess watershed structure and its changes constructed the complex system of the loess landform, and it has the great significance for studying the spatial pattern and evolution law of the watershed geomorphology.
文摘将粒子群优化(PSO)算法与BP神经网络相结合,应用在传感器静态非线性特性的校正中.用PSO算法所得到的全局最优值作为BP神经网络的初始权值,训练BP神经网络,训练结束后的神经网络作为传感器的静态特性校正器.应用结果表明,该方法可以提高BP神经网络的精度,并且该神经网络具有良好的泛化能力.
Abstract:
A static nonlinear errors method for correcting the sensors based on BP neural network using particle swarm optimization (PSO) is described. The global best values of particle swarm are used as initial weights of BP neural network to train BP neural network. Then the trained neural network is regarded as the sensor's corrector. The application results show that this method can improve the precision of the BP neural network, and the generalization capability of the neural network is good.
文摘Over the past several years,advances in the technical domain of computed tomography(CT) have influenced the trend of imaging modalities used in the clinical evaluation of the urinary system.Renal collecting systems can be illustrated more precisely with the advent of multi-detector row CT through thinner slices,high speed acquisitions,and enhanced longitudinal spatial resolution resulting in improved reformatted coronal images.On the other hand,a significant increase in exposure to ionizing radiation,especially in the radiosensitive organs,such as the gonads,is a concern with the increased utilization of urinary tract CT.In this article,we discuss the strategies and techniques availablefor reducing radiation dose for a variety of urinary tractCT protocols with metabolic clinical examples.We also reviewed CT for hematuria evaluation and related scan parameter optimization such as,reducing the number of acquisition phases,CT angiography of renal donors and lowering tube potential,when possible.
文摘We consider the problem of assessing bone fracture risk for a subject hit by a blunt impact projectile. We aim at constructing a framework for integrating test data and Advanced Total Body Model (ATBM) simulations into the risk assessment. The ATBM is a finite element model managed by the Joint Non-Lethal Weapons Directorate for the purpose of assessing the risk of injury caused by blunt impacts from non-lethal weapons. In ATBM simulations, the quantity that determines arm bone fracture is the calculated maximum strain in the bone. The main obstacle to accurate prediction is that the calculated strain is incompatible with the measured strain. The fracture strain measured in bending tests of real bones is affected by random inhomogeneity in bones and uncertainty in measurement gauge attachment location/orientation. In contrast, the strain calculated in ATBM simulations is based on the assumption that all bones are perfectly elastic with homogeneous material properties and no measurement uncertainty. To connect test data and ATBM simulations in a proper and meaningful setting, we introduce the concept of elasticity-homogenized strain. We interpret test data in terms of the homogenized strain, and build an empirical dose-injury model with the homogenized strain as the input dose for predicting injury. The maximum strain calculated by ATBM has randomness due to uncertainty in specifications of ATBM setup parameters. The dose propagation uncertainty formulation accommodates this uncertainty efficiently by simply updating the shape parameters in the dose-injury model, avoiding the high computational cost of sampling this uncertainty via multiple ATBM runs.
文摘This work investigated the absorbed dose to water rate under reference conditions in a Cyberknife VSI system using radiochromic films EBT3 and MD-V3 and three ionization chambers: an Exradin A12 and two FC65P Welhöfer Scanditronix with different serial numbers. The correction factor,, was studied using a Varian iX linac and the Cyberknife system. The measurements in the Varian iX were performed in a 10 × 10 cm2 field, 10 cm depth in liquid water at 90 cm and 70 cm SSD and in a 5.4 × 5.4 cm2 field, 10 cm depth at 70 cm SSD to simulate the Cyberknife conditions. In the Cyberknife system, measurements were performed using ionization chambers and both film types at 70 cm SSD and 10 cm depth in its 6 cm diameter reference field. The results indicate that ?is independent of the dosimeters and the evaluation methods. Maximum differences of 0.22% - 0.55% (combined uncertainties of 1.22% - 1.98%, k = 1) are obtained on ?using Varian iX, whereas discrepancies of 2.08% - 2.09% (combined uncertainties of 1.87% - 2.13%, k = 1) are observed using the Cyberknife system. Given the agreement between detectors and the combined standard uncertainties, the data from Varian iX could be considered the most accurate and consequently a weighted average factor of 0.902 ± 0.006 could be used for the Cyberknife VSI system reference field. Within measurement uncertainties, the absorbed dose rate measured in the Cyberknife VSI system reference field was found to be independent of the dosimeters used. These results suggest that the absorbed dose measured at a point within a given field size should be the same, regardless the dosimeter used, if their dosimetric characteristics are well known. This highlighted the importance of performing dosimetry by controlling all parameters that could affect the dosimeter response. One can conclude that radiochromic film dosimetry can be considered as an appropriate alternative for measuring absorbed dose to water rate.
文摘AIM:To evaluate impact of radiation therapy dose escalation through intensity modulated radiation therapy with simultaneous integrated boost(IMRT-SIB).METHODS:We retrospectively reviewed the patients who underwent four-dimensional-based IMRT-SIBbased neoadjuvant chemoradiation protocol.During the concurrent chemoradiation therapy,radiation therapy was through IMRT-SIB delivered in 28 consecutive daily fractions with total radiation doses of 56 Gy to tumor and 5040 Gy dose-painted to clinical tumor volume,with a regimen at the discretion of the treating medical oncologist.This was followed by surgical tumor resection.We analyzed pathological completion response(p CR) rates its relationship with overall survival and event-freesurvival.RESULTS:Seventeen patients underwent dose escalation with the IMRT-SIB protocol between 2007 and 2014 and their records were available for analysis.Among the IMRT-SIB-treated patients,the toxicity appeared mild,the most common side effects were grade 1-3 esophagitis(46%) and pneumonitis(11.7%).There were no cardiac events.The Ro resection rate was 94%(n = 16),the p CR rate was 47%(n = 8),and the postoperative morbidity was zero.There was one mediastinal failure found,one patient had local failure at the anastomosis site,and the majority of failures were distant in the lung or bone.The 3-year diseasefree survival and overall survival rates were 41%(n = 7) and 53%(n = 9),respectively.CONCLUSION:The dose escalation through IMRT-SIB in the chemoradiation regimen seems responsible for down-staging the distal esophageal with well-tolerated complications.