The proteins coming from the milk whey have numerous functional properties. Among the proteins with high bioactivity, α-lactoalbumin (α-La) and β-lactoglobulin (β-Lg) are present in large quantities in the milk wh...The proteins coming from the milk whey have numerous functional properties. Among the proteins with high bioactivity, α-lactoalbumin (α-La) and β-lactoglobulin (β-Lg) are present in large quantities in the milk whey. In the separation process of proteins, it is important to choose techniques which besides ensuring purity and high yield will not affect the molecule biological activity. The aqueous two-phase systems (ATS) have been utilized with success in the partition of these proteins, however, the studies were performed using protein in its pure form. Studies using milk whey in-nature and goat milk whey have not been found yet. In this context, the objective of this study was to evaluate the liquid liquid equilibrium of aqueous two-phase systems (ATS) in the partition of α-La and β-Lg from goat milk whey in-nature. Equilibrium data were performed considering ATS comprised of polyethylene glycol, potassium phosphate and water at 25°C and pH 7.0. The influence of the polymer molecular weight and amount of goat milk whey in-nature on the partition coefficient of these proteins were assessed. The partition coefficient, selectivity, process yield and purity of α-lactoalbumin and β-lactoglobulin proteins were determined. The results showed that the separation technique by aqueous biphasic systems is applicable indicating high efficiency in the whey proteins separation process.展开更多
文摘The proteins coming from the milk whey have numerous functional properties. Among the proteins with high bioactivity, α-lactoalbumin (α-La) and β-lactoglobulin (β-Lg) are present in large quantities in the milk whey. In the separation process of proteins, it is important to choose techniques which besides ensuring purity and high yield will not affect the molecule biological activity. The aqueous two-phase systems (ATS) have been utilized with success in the partition of these proteins, however, the studies were performed using protein in its pure form. Studies using milk whey in-nature and goat milk whey have not been found yet. In this context, the objective of this study was to evaluate the liquid liquid equilibrium of aqueous two-phase systems (ATS) in the partition of α-La and β-Lg from goat milk whey in-nature. Equilibrium data were performed considering ATS comprised of polyethylene glycol, potassium phosphate and water at 25°C and pH 7.0. The influence of the polymer molecular weight and amount of goat milk whey in-nature on the partition coefficient of these proteins were assessed. The partition coefficient, selectivity, process yield and purity of α-lactoalbumin and β-lactoglobulin proteins were determined. The results showed that the separation technique by aqueous biphasic systems is applicable indicating high efficiency in the whey proteins separation process.