The excitation energy transfer efficiency between p-Car and Chla molecules in purified CP43 and CP47 was calculated by comparing absorption and fluorescence excitation after normalization at 550 nm, CP43 had an energy...The excitation energy transfer efficiency between p-Car and Chla molecules in purified CP43 and CP47 was calculated by comparing absorption and fluorescence excitation after normalization at 550 nm, CP43 had an energy transfer efficiency of 29.1% while the CP47 had an energy transfer efficiency of 62.8%, proving that excitation energy was transferred between p-Car and Chla molecules in CP43 and CP47 at normal conditions. The excitation energy transfer between p-Car and Chla molecules in CP43 and CP47 may occur through the "Dexter" mechanism and the distance between these two kinds of pigments should be less than 1 nm. In addition, the results were also used to discuss the conformational relationship between p-Car and Chla molecules in CP43 and CP47.展开更多
Ultrafast time_resolved fluorescence experiments have been performed with core antennas CP43 and CP47 of PS Ⅱ. Their dynamic fluorescence spectra were obtained with excitation wavelength 514.5 nm. For CP43, the emiss...Ultrafast time_resolved fluorescence experiments have been performed with core antennas CP43 and CP47 of PS Ⅱ. Their dynamic fluorescence spectra were obtained with excitation wavelength 514.5 nm. For CP43, the emission spectrum was found to be from 640 to 780 nm with a peak at ~680 nm and the lifetime of fluorescence was 3.54 ns. For CP47, the emission spectrum was from 630 to 775 nm with a peak at ~691 nm and the fluorescence lifetime was 3.22 ns. The fluorescence emission efficiencies of Chl a in CP43 and CP47 were calculated to be approximately 38.3% and 40.6%, respectively. The energy transfer from β_Car to Chl a in CP43 and CP47 was discussed. The rates of energy transfer from β_Car to Chl a were measured to be about 9.6×10 11 s -1 and 1.3×10 12 s -1 and energy transfer efficiencies 47.5% and 66.5% respectively. The edge_edge distances between β_Car and Chl a in CP43 and CP47 were estimated to be ~0.110 nm and ~0.085 nm respectively.展开更多
文摘The excitation energy transfer efficiency between p-Car and Chla molecules in purified CP43 and CP47 was calculated by comparing absorption and fluorescence excitation after normalization at 550 nm, CP43 had an energy transfer efficiency of 29.1% while the CP47 had an energy transfer efficiency of 62.8%, proving that excitation energy was transferred between p-Car and Chla molecules in CP43 and CP47 at normal conditions. The excitation energy transfer between p-Car and Chla molecules in CP43 and CP47 may occur through the "Dexter" mechanism and the distance between these two kinds of pigments should be less than 1 nm. In addition, the results were also used to discuss the conformational relationship between p-Car and Chla molecules in CP43 and CP47.
文摘Ultrafast time_resolved fluorescence experiments have been performed with core antennas CP43 and CP47 of PS Ⅱ. Their dynamic fluorescence spectra were obtained with excitation wavelength 514.5 nm. For CP43, the emission spectrum was found to be from 640 to 780 nm with a peak at ~680 nm and the lifetime of fluorescence was 3.54 ns. For CP47, the emission spectrum was from 630 to 775 nm with a peak at ~691 nm and the fluorescence lifetime was 3.22 ns. The fluorescence emission efficiencies of Chl a in CP43 and CP47 were calculated to be approximately 38.3% and 40.6%, respectively. The energy transfer from β_Car to Chl a in CP43 and CP47 was discussed. The rates of energy transfer from β_Car to Chl a were measured to be about 9.6×10 11 s -1 and 1.3×10 12 s -1 and energy transfer efficiencies 47.5% and 66.5% respectively. The edge_edge distances between β_Car and Chl a in CP43 and CP47 were estimated to be ~0.110 nm and ~0.085 nm respectively.