Cetyl-chitosan, prepared by reacting chitosan with chlorocetane under alkaline condition, is soluble and spontaneously forms nanoparticles about 100 nm in diameter. Infrared spectra (IR) revealed that there was a subs...Cetyl-chitosan, prepared by reacting chitosan with chlorocetane under alkaline condition, is soluble and spontaneously forms nanoparticles about 100 nm in diameter. Infrared spectra (IR) revealed that there was a substitution reaction mainly on the amine groups of chitosan (CS). By using paracetamol (PCTM) as a model drug, the balanced release concentration of PCTM in phosphate buffer solution (pH=7.4) can be decreased with the increase of degree of substitution alkyl and can be reduced effectively even under a lower PCTM loading.展开更多
An rCHO cell line expressing recombinant human prourokinase (pro-UK) at the level of 5μg/ 10^6cells/d was cultivated on Cytopore cellulose porous microcarriers in a 7.5L Biostat CT stirred tank reactor. A periodic ...An rCHO cell line expressing recombinant human prourokinase (pro-UK) at the level of 5μg/ 10^6cells/d was cultivated on Cytopore cellulose porous microcarriers in a 7.5L Biostat CT stirred tank reactor. A periodic pressure oscillation of 0.04 MPa and 0.04 Hz was adopted to introduce a physical stimulus on the rCHO cells and to improve mass transfer characteristic between cells and medium in the process of porous microcarrier CHO cell culture. Compared to constant pressure culture, the oscillation culture didn't influence specific cell growth rate significantly, but could enhance the pro-UK specific production by 10% - 40%, and reduce production of lactate by 10% - 30%. In the perfusion culture of recombinant CHO cell with serum-free medium for 67 days, cell density could reach 2.64×10^7/ml, the maximal prourokinase concentration in harvested supernatant was about 118mg/L, a total of 21.1 grams of prourokinase was produced in 313 liters of supernatant. In conclusion, the perfusion cell culture with periodic pressure oscillation can enhance the production of recombinant protein and increase the reactor specific productivity.展开更多
CD-1, a genetically-engineered CHO cell line, was cultivated with a Biosilon microcarrier culture system.We successfully cultivated CD-1 cells to a very high density (over1×107cells/ml). Prourokinase was stably s...CD-1, a genetically-engineered CHO cell line, was cultivated with a Biosilon microcarrier culture system.We successfully cultivated CD-1 cells to a very high density (over1×107cells/ml). Prourokinase was stably secreted at about 180 IU/ 1e6 cells/24 h. Experiments showed that CD-1 cells growing on Biosilon microcarriers were able to spontaneously release from the microcarriers, then reatthch and proliferate on fresh microcarriers. This makes it very easy to scale up preduction. The microcarriers could be reused several times without affecting adhesion. proliferation and prourokinase secretion. With CMPECC membrane radial flow chromatography and MPG chromatography, the prourokinase in conditioned medium could be purified to a specific activity of 1×105 IU/mg of protein. The purification factor was about 600 fold, and approxiamately 90 % of the biological activity was recovered.展开更多
Genetically-engineered CHO cell lines, rβ- 13 and CLF-8B2, were cultivated with the MC- 1 microcarrier culture system. The cell density could be enhanced by increasing the concentration of microcarrier. At a microcar...Genetically-engineered CHO cell lines, rβ- 13 and CLF-8B2, were cultivated with the MC- 1 microcarrier culture system. The cell density could be enhanced by increasing the concentration of microcarrier. At a microcarrier concentration of 10 mg/ml. the cell density could reach 4 to 5 × 106 cells/ml. It was shown that these cell lines would spontaneously release from the microcarrier to attach to and proliferate on fresh microcarriers. We were thus able to scale up cultivation using a simple method. i. e. by adding fresh microcarriers and medium directly into the culture system to about 2, 4 or 8 times the original volume. Using a perfusion culture system. we have successfully cultivated CLF-8B2 cells in a 2 L bioreactor for several weeks at medium perfusion rates of 0. 5 to 3working volumes. Prourokinase was stably secreted.展开更多
Hyaluronan (HA), the consistent glycosaminoglycans in extracellular matrix, is a kind of biomaterials with wonderful biocompatibility. To develop drug release system (DDS) with HA as drug carrier is a new hotspot in t...Hyaluronan (HA), the consistent glycosaminoglycans in extracellular matrix, is a kind of biomaterials with wonderful biocompatibility. To develop drug release system (DDS) with HA as drug carrier is a new hotspot in the field of pharmaceutics. In this paper, we applied technique of ultrosound and reversed phase (Water/Oil) emulsification to develop dexamethasone (DEX)-HA-STMP cross-linking microspheres (DEX-HA MS) with STMP as cross-linker. DEX-HA MS has a wonderful shape and property of dispersion. There is a negative correlation between diameter of DEX-HA MS and the content of cross-linker, or the content of emulsifier, and a positive correlation between the diameter and CHA . When CHA≤1%,DEX/HA≤1/10 (g/g),there is a positive correlation between the factors mentioned below and drug loading (DL%)/loading efficiency (LE%),the content of STMP, the content of emulsifier,CHA and the content of DEX. DEX-HA-MS can realize function of slow release. In vitro drug release experiment shows that cumulative release (CR%) of DEX-HA MS fits in with pervasion-corrosion equation, and there is a negative correlation between the content of STMP, CHA and CR%, a positive correlation between emulsifier and CR%. When DEX/HA≤1/5 (g/g) there is a negative correlation between the content of DEX and CR%.展开更多
Our study investigated the host cell protein which can interact with SARS-CoV N protein, and explored the functional connections. The eukaryotic expression vectors pEGFP-N1/SARS-CoVN and pdsRed2-N1/ CXCL16 were constr...Our study investigated the host cell protein which can interact with SARS-CoV N protein, and explored the functional connections. The eukaryotic expression vectors pEGFP-N1/SARS-CoVN and pdsRed2-N1/ CXCL16 were constructed and used to co-transfect HEK293FT cells by the calcium phosphate method. The HIS-tagged fusion protein SARS-CoVN-GFP was then built and purified for the binding assay in vitro. The co-localization of SARS-CoVN and CXCL16 in the cytoplasm of HEK293FT cells was also shown using confocal laser scanning microscopy. It is suggested that their interaction might be through direct combination. Under a fluorescence microscope, it was observed that the purified fusion protein SARS-CoVN-GFP was attached to the cell membrane of CXCL16-transfected cells, indicating that SARS-CoVN and CXCL16 can be mutually combined.展开更多
We systematically investigated the electrical nanoplates through field effect transistor and properties of spiral-type and smooth Bi2Se3 conductive atomic force microscopy (CAFM) measurement. It is observed that bot...We systematically investigated the electrical nanoplates through field effect transistor and properties of spiral-type and smooth Bi2Se3 conductive atomic force microscopy (CAFM) measurement. It is observed that both nanoplates possess high conductivity and show metallic-like behavior. Compared to the smooth nanoplate, the spiral-type one exhibits the higher carrier concentration and lower mobility. CAFM characterization reveals that the conductance at the screw-dislocation edge is even higher than that on the terrace, implying that the dislocation can supply excess carriers to compensate the low mobility and achieve high conductivity. The unique structure and electrical properties make the spiral-type Bi2 Se3 nanoplates a good candidate for catalysts and gas sensors.展开更多
The fabrication of functional microcarriers capable of achieving in vivo-like three-dimensional cell culture is important for many tissue engineering applications. Here,inspired by the structure of Buddha beads, which...The fabrication of functional microcarriers capable of achieving in vivo-like three-dimensional cell culture is important for many tissue engineering applications. Here,inspired by the structure of Buddha beads, which are generally composed of moveable beads strung on a rope, we present novel cell microcarriers with controllable macropores and heterogeneous microstructures by using a capillary array microfluidic technology. Microfibers with a string of moveable and releasable microcarriers could be achieved by an immediate gelation reaction of sodium alginate spinning and subsequent polymerization of cell-dispersed gelatin methacrylate emulsification. The sizes of the microcarriers and their inner macropores could be well tailored by adjusting the flow rates of the microfluidic phases; this was of great importance in guaranteeing a sufficient supply of nutrients during cell culture. In addition, by infusing multiple cell-dispersed pregel solutions into the capillaries, the microcarriers with spatially heterogeneous cell encapsulations for mimicking physiological structures and functions could also be achieved.展开更多
Cell microcarriers have emerged as a powerful cell culture platform in biomedical areas, but their functions are usually limited to simply capturing and proliferating cells,because of the simplicity of their component...Cell microcarriers have emerged as a powerful cell culture platform in biomedical areas, but their functions are usually limited to simply capturing and proliferating cells,because of the simplicity of their components. Thus, in this study, we developed a new near-infrared(NIR) light-responsive graphene oxide(GO) hydrogel microcarrier system for controllable cell culture. The microcarriers were generated by using capillary microfluidics to emulsify the GO dispersed poly(N-isopropylacrylamide)(pNIPAM) and gelatin methacrylate(GelMA) pre-gel solution. The composite GO hydrogel microcarriers exhibited photothermally responsive cell capture, as well as the capacity for proliferation and release due to the NIR absorption of GO, the thermally responsive shape transition of pNIPAM, and the high biocompatibility of Gel MA. It was found that the NIR-responsive GO hydrogel microcarriers could prevent the cultured cells from being attacked by the immune system and promote the formation of tumor models in immunocompetent mice, which is desired for tumor and drug research. These features make the NIR-responsive GO hydrogel microcarriers excellent functional materials for different biomedical applications.展开更多
Microcarriers have a demonstrated value for biomedical applications,in particular for drug delivery and three-dimensional cell culture.Attempts to develop this technique tend to focus on the fabrication of functional ...Microcarriers have a demonstrated value for biomedical applications,in particular for drug delivery and three-dimensional cell culture.Attempts to develop this technique tend to focus on the fabrication of functional microparticles by using convenient methods with innovative but accessible materials.Inspired by the process of boiling eggs in everyday life,which causes the solidification of egg proteins,we present a new microfluidic‘‘cooking"approach for the generation of egg-derived microcarriers for cell culture and drug delivery.As the egg emulsion droplets are formed with exquisite precision during the microfluidic emulsification,the resultant egg microcarriers present highly monodisperse and uniform morphologies at the size range of hundred microns to one millimeter.Benefiting from the excellent biocompatibility of the egg protein components,the obtained microcarriers showed good performances of cell adherence and growth.In addition,after a freezing treatment,the egg microcarriers were shown to have interconnected porous structures throughout their whole sphere,could absorb and load different kinds of drugs or other active molecules,and work as microcarrier-based delivery systems.These features point to the potential value of the microfluidic egg microcarriers in biomedicine.展开更多
A novel vehicle for the delivery of aspirin (ASA) was prepared from porous nano-hydroxyapafite/poly(styrene-divinylbenzene) [nano-HAP/P(St-DVB)] composite microspheres by grafting nano-HAP [Ca10(PO4)6(OH)2] ...A novel vehicle for the delivery of aspirin (ASA) was prepared from porous nano-hydroxyapafite/poly(styrene-divinylbenzene) [nano-HAP/P(St-DVB)] composite microspheres by grafting nano-HAP [Ca10(PO4)6(OH)2] onto porous P(St-DVB) micro- spheres. Four types of porous composite microspheres were prepared, each with different nano-HAP contents. The ASA-loaded composite microspheres prepared with 10% and 15% nano-HAP (mass ratio) exhibited excellent buoyancy with relatively short instantaneous floating time (within l0 min) and a long sustained floating time (12 h) in simulated gastric juice. They also offered good sustained release of ASA (up to 8 h). Furthermore, these composite microspheres displayed good buff- ering capacity that prevented the buildup of acidity caused by hydrolysis of ASA, keeping the pH of gastric juice within the normal range (pH 0.9 to 1.5). The results showed that porous nano-HAP/P(St-DVB) composite microspheres prepared with 10% and 15% nano-HAP could be used as a novel drug carrier for ASA, providing a sustained release dose without leading to stomach irritation, a side effect that is often associated with ASA medication.展开更多
The orientation of the dimple increases the flow distance in the dimple and produces fluid cumulative effect in the dimple length direction, which leads to obvious hydrodynamic effect as a result. In order to investig...The orientation of the dimple increases the flow distance in the dimple and produces fluid cumulative effect in the dimple length direction, which leads to obvious hydrodynamic effect as a result. In order to investigate the hydrodynamic effect of orientation dimples, a series of experiments was carried out on a ring-on-ring test. Multi-pored faces were tested with different dimple inclination angles and slender ratios. Film thickness and frictional torque were measured under different conditions of load and rotation speed. Experimental results showed that the orientation dimple could produce obvious dynamic effect by change of the flow direction and the increasing dimple orientation leads to increase of the load capability. The hydrodynamic effect strongly depends on dimple orientation parameters such as inclination angle and slender ratio. A larger load capability can be available by increasing dimple orientation and rotation speed. Experimental results agreed well with the theory that orientation micro-pores can significantly improve hydrodynamic performance of surfaces.展开更多
文摘Cetyl-chitosan, prepared by reacting chitosan with chlorocetane under alkaline condition, is soluble and spontaneously forms nanoparticles about 100 nm in diameter. Infrared spectra (IR) revealed that there was a substitution reaction mainly on the amine groups of chitosan (CS). By using paracetamol (PCTM) as a model drug, the balanced release concentration of PCTM in phosphate buffer solution (pH=7.4) can be decreased with the increase of degree of substitution alkyl and can be reduced effectively even under a lower PCTM loading.
文摘An rCHO cell line expressing recombinant human prourokinase (pro-UK) at the level of 5μg/ 10^6cells/d was cultivated on Cytopore cellulose porous microcarriers in a 7.5L Biostat CT stirred tank reactor. A periodic pressure oscillation of 0.04 MPa and 0.04 Hz was adopted to introduce a physical stimulus on the rCHO cells and to improve mass transfer characteristic between cells and medium in the process of porous microcarrier CHO cell culture. Compared to constant pressure culture, the oscillation culture didn't influence specific cell growth rate significantly, but could enhance the pro-UK specific production by 10% - 40%, and reduce production of lactate by 10% - 30%. In the perfusion culture of recombinant CHO cell with serum-free medium for 67 days, cell density could reach 2.64×10^7/ml, the maximal prourokinase concentration in harvested supernatant was about 118mg/L, a total of 21.1 grams of prourokinase was produced in 313 liters of supernatant. In conclusion, the perfusion cell culture with periodic pressure oscillation can enhance the production of recombinant protein and increase the reactor specific productivity.
文摘CD-1, a genetically-engineered CHO cell line, was cultivated with a Biosilon microcarrier culture system.We successfully cultivated CD-1 cells to a very high density (over1×107cells/ml). Prourokinase was stably secreted at about 180 IU/ 1e6 cells/24 h. Experiments showed that CD-1 cells growing on Biosilon microcarriers were able to spontaneously release from the microcarriers, then reatthch and proliferate on fresh microcarriers. This makes it very easy to scale up preduction. The microcarriers could be reused several times without affecting adhesion. proliferation and prourokinase secretion. With CMPECC membrane radial flow chromatography and MPG chromatography, the prourokinase in conditioned medium could be purified to a specific activity of 1×105 IU/mg of protein. The purification factor was about 600 fold, and approxiamately 90 % of the biological activity was recovered.
文摘Genetically-engineered CHO cell lines, rβ- 13 and CLF-8B2, were cultivated with the MC- 1 microcarrier culture system. The cell density could be enhanced by increasing the concentration of microcarrier. At a microcarrier concentration of 10 mg/ml. the cell density could reach 4 to 5 × 106 cells/ml. It was shown that these cell lines would spontaneously release from the microcarrier to attach to and proliferate on fresh microcarriers. We were thus able to scale up cultivation using a simple method. i. e. by adding fresh microcarriers and medium directly into the culture system to about 2, 4 or 8 times the original volume. Using a perfusion culture system. we have successfully cultivated CLF-8B2 cells in a 2 L bioreactor for several weeks at medium perfusion rates of 0. 5 to 3working volumes. Prourokinase was stably secreted.
文摘Hyaluronan (HA), the consistent glycosaminoglycans in extracellular matrix, is a kind of biomaterials with wonderful biocompatibility. To develop drug release system (DDS) with HA as drug carrier is a new hotspot in the field of pharmaceutics. In this paper, we applied technique of ultrosound and reversed phase (Water/Oil) emulsification to develop dexamethasone (DEX)-HA-STMP cross-linking microspheres (DEX-HA MS) with STMP as cross-linker. DEX-HA MS has a wonderful shape and property of dispersion. There is a negative correlation between diameter of DEX-HA MS and the content of cross-linker, or the content of emulsifier, and a positive correlation between the diameter and CHA . When CHA≤1%,DEX/HA≤1/10 (g/g),there is a positive correlation between the factors mentioned below and drug loading (DL%)/loading efficiency (LE%),the content of STMP, the content of emulsifier,CHA and the content of DEX. DEX-HA-MS can realize function of slow release. In vitro drug release experiment shows that cumulative release (CR%) of DEX-HA MS fits in with pervasion-corrosion equation, and there is a negative correlation between the content of STMP, CHA and CR%, a positive correlation between emulsifier and CR%. When DEX/HA≤1/5 (g/g) there is a negative correlation between the content of DEX and CR%.
文摘Our study investigated the host cell protein which can interact with SARS-CoV N protein, and explored the functional connections. The eukaryotic expression vectors pEGFP-N1/SARS-CoVN and pdsRed2-N1/ CXCL16 were constructed and used to co-transfect HEK293FT cells by the calcium phosphate method. The HIS-tagged fusion protein SARS-CoVN-GFP was then built and purified for the binding assay in vitro. The co-localization of SARS-CoVN and CXCL16 in the cytoplasm of HEK293FT cells was also shown using confocal laser scanning microscopy. It is suggested that their interaction might be through direct combination. Under a fluorescence microscope, it was observed that the purified fusion protein SARS-CoVN-GFP was attached to the cell membrane of CXCL16-transfected cells, indicating that SARS-CoVN and CXCL16 can be mutually combined.
文摘We systematically investigated the electrical nanoplates through field effect transistor and properties of spiral-type and smooth Bi2Se3 conductive atomic force microscopy (CAFM) measurement. It is observed that both nanoplates possess high conductivity and show metallic-like behavior. Compared to the smooth nanoplate, the spiral-type one exhibits the higher carrier concentration and lower mobility. CAFM characterization reveals that the conductance at the screw-dislocation edge is even higher than that on the terrace, implying that the dislocation can supply excess carriers to compensate the low mobility and achieve high conductivity. The unique structure and electrical properties make the spiral-type Bi2 Se3 nanoplates a good candidate for catalysts and gas sensors.
基金supported by the National Natural Science Foundation of China(21473029 and 51522302)the NSAF Foundation of China(U1530260)+3 种基金the Natural Science Foundation of Jiangsu(BK20140028)the Program for New Century Excellent Talents in Universitythe Scientific Research Foundation of Southeast Universitythe Scientific Research Foundation of Graduate School of Southeast University
文摘The fabrication of functional microcarriers capable of achieving in vivo-like three-dimensional cell culture is important for many tissue engineering applications. Here,inspired by the structure of Buddha beads, which are generally composed of moveable beads strung on a rope, we present novel cell microcarriers with controllable macropores and heterogeneous microstructures by using a capillary array microfluidic technology. Microfibers with a string of moveable and releasable microcarriers could be achieved by an immediate gelation reaction of sodium alginate spinning and subsequent polymerization of cell-dispersed gelatin methacrylate emulsification. The sizes of the microcarriers and their inner macropores could be well tailored by adjusting the flow rates of the microfluidic phases; this was of great importance in guaranteeing a sufficient supply of nutrients during cell culture. In addition, by infusing multiple cell-dispersed pregel solutions into the capillaries, the microcarriers with spatially heterogeneous cell encapsulations for mimicking physiological structures and functions could also be achieved.
基金supported by the National Natural Science Foundation of China (21473029 and 51522302)the NSAF Foundation of China (U1530260)+3 种基金the Scientific Research Foundation of Southeast Universitythe Scientific Research Foundation of Graduate School of Southeast Universitythe Postgraduate Research & Practice Innovation Program of Jiangsu Provincethe Fundamental Research Funds for the Central Universities
文摘Cell microcarriers have emerged as a powerful cell culture platform in biomedical areas, but their functions are usually limited to simply capturing and proliferating cells,because of the simplicity of their components. Thus, in this study, we developed a new near-infrared(NIR) light-responsive graphene oxide(GO) hydrogel microcarrier system for controllable cell culture. The microcarriers were generated by using capillary microfluidics to emulsify the GO dispersed poly(N-isopropylacrylamide)(pNIPAM) and gelatin methacrylate(GelMA) pre-gel solution. The composite GO hydrogel microcarriers exhibited photothermally responsive cell capture, as well as the capacity for proliferation and release due to the NIR absorption of GO, the thermally responsive shape transition of pNIPAM, and the high biocompatibility of Gel MA. It was found that the NIR-responsive GO hydrogel microcarriers could prevent the cultured cells from being attacked by the immune system and promote the formation of tumor models in immunocompetent mice, which is desired for tumor and drug research. These features make the NIR-responsive GO hydrogel microcarriers excellent functional materials for different biomedical applications.
基金supported by the National Natural Science Foundation of China (21473029, 51522302)the NSAF Foundation of China (U1530260)+2 种基金the Natural Science Foundation of Jiangsu Province (BK20140028)the Program for New Century Excellent Talents in Universitythe Scientific Research Foundation of Southeast University
文摘Microcarriers have a demonstrated value for biomedical applications,in particular for drug delivery and three-dimensional cell culture.Attempts to develop this technique tend to focus on the fabrication of functional microparticles by using convenient methods with innovative but accessible materials.Inspired by the process of boiling eggs in everyday life,which causes the solidification of egg proteins,we present a new microfluidic‘‘cooking"approach for the generation of egg-derived microcarriers for cell culture and drug delivery.As the egg emulsion droplets are formed with exquisite precision during the microfluidic emulsification,the resultant egg microcarriers present highly monodisperse and uniform morphologies at the size range of hundred microns to one millimeter.Benefiting from the excellent biocompatibility of the egg protein components,the obtained microcarriers showed good performances of cell adherence and growth.In addition,after a freezing treatment,the egg microcarriers were shown to have interconnected porous structures throughout their whole sphere,could absorb and load different kinds of drugs or other active molecules,and work as microcarrier-based delivery systems.These features point to the potential value of the microfluidic egg microcarriers in biomedicine.
基金financially supported by the Young Scientists Fund of the Natural Science Foundation of Heilongjiang Province (QC2011C099)Scientific Fund of Heilongjiang Province Department of Health (2009-259)+3 种基金Grant from Educational Office of Heilongjiang Province (11551178 and1154HZ11)Fund of Daqing GaoXin Qu (DQGX09YF016)the National Natural Science Foundation of China (30871007)the Natural Science Foundation of Heilongjiang Province (ZD2008-08 and LC2009C12)
文摘A novel vehicle for the delivery of aspirin (ASA) was prepared from porous nano-hydroxyapafite/poly(styrene-divinylbenzene) [nano-HAP/P(St-DVB)] composite microspheres by grafting nano-HAP [Ca10(PO4)6(OH)2] onto porous P(St-DVB) micro- spheres. Four types of porous composite microspheres were prepared, each with different nano-HAP contents. The ASA-loaded composite microspheres prepared with 10% and 15% nano-HAP (mass ratio) exhibited excellent buoyancy with relatively short instantaneous floating time (within l0 min) and a long sustained floating time (12 h) in simulated gastric juice. They also offered good sustained release of ASA (up to 8 h). Furthermore, these composite microspheres displayed good buff- ering capacity that prevented the buildup of acidity caused by hydrolysis of ASA, keeping the pH of gastric juice within the normal range (pH 0.9 to 1.5). The results showed that porous nano-HAP/P(St-DVB) composite microspheres prepared with 10% and 15% nano-HAP could be used as a novel drug carrier for ASA, providing a sustained release dose without leading to stomach irritation, a side effect that is often associated with ASA medication.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50805130, 50775206)the Zhejiang Nature Science Foundation of China (Grant Nos. Y1090620, R1090833)+1 种基金the Tribology Science Fund of State Key Laboratory of Tribology of China (Grant No. SKLTKF08B01)the Program of Young Leaders and Core Instructors of Disciplines in Science of Zhejiang University of Technology (Grant No. 102004829)
文摘The orientation of the dimple increases the flow distance in the dimple and produces fluid cumulative effect in the dimple length direction, which leads to obvious hydrodynamic effect as a result. In order to investigate the hydrodynamic effect of orientation dimples, a series of experiments was carried out on a ring-on-ring test. Multi-pored faces were tested with different dimple inclination angles and slender ratios. Film thickness and frictional torque were measured under different conditions of load and rotation speed. Experimental results showed that the orientation dimple could produce obvious dynamic effect by change of the flow direction and the increasing dimple orientation leads to increase of the load capability. The hydrodynamic effect strongly depends on dimple orientation parameters such as inclination angle and slender ratio. A larger load capability can be available by increasing dimple orientation and rotation speed. Experimental results agreed well with the theory that orientation micro-pores can significantly improve hydrodynamic performance of surfaces.