The intra- and inter-band relaxation dynamics of CdSe/CdS/ZnS core/shell/shell quantum dots are investigated with the aid of time-resolved nonlinear transmission spectra which are obtained using femtosecond pump-probe...The intra- and inter-band relaxation dynamics of CdSe/CdS/ZnS core/shell/shell quantum dots are investigated with the aid of time-resolved nonlinear transmission spectra which are obtained using femtosecond pump-probe technique. By selectively exciting the core and shell carrier, the dynamics are studied in detail. Carrier relaxation is found faster in the conduction band of the CdS shell (about 130 fs) than that in the conduction band of the CdSe core (about 400 fs). From the experiments it is distinctly demonstrated the existence of the defect states in the interface between the CdSe core and the CdS shell, indicating that ultrafast spectroscopy might be a suitable tool in studying interface and surface morphology properties in nanosystems.展开更多
An approach based on equivalent mechanics theory and computational fluid dynamics (CFD) technology is proposed to estimate dynamical influence of propellant sloshing on the spacecraft. A mechanical model is estab- l...An approach based on equivalent mechanics theory and computational fluid dynamics (CFD) technology is proposed to estimate dynamical influence of propellant sloshing on the spacecraft. A mechanical model is estab- lished by using CFD technique and packed as a "sloshing" block used in spacecraft guidance navigation and control (GNC) simulation loop. The block takes motion characteristics of the spacecraft as inputs and outputs of pertur- bative force and torques induced by propellant sloshing, thus it is more convenient for analyzing coupling effect between propellant sloshing dynamic and spacecraft GNC than using CFD packages. An example demonstrates the accuracy and the superiority of the approach. Then, the deducing process is applied to practical cases, and simulation results validate that the proposed approach is efficient for identifying the problems induced by sloshing and evaluating effectiveness of several typical designs of sloshing suppression.展开更多
A key problem in seismic inversion is the identification of the reservoir fluids. Elastic parameters, such as seismic wave velocity and formation density, do not have sufficient sensitivity, thus, the conventional amp...A key problem in seismic inversion is the identification of the reservoir fluids. Elastic parameters, such as seismic wave velocity and formation density, do not have sufficient sensitivity, thus, the conventional amplitude-versus-offset(AVO) method is not applicable. The frequency-dependent AVO method considers the dependency of the seismic amplitude to frequency and uses this dependency to obtain information regarding the fluids in the reservoir fractures. We propose an improved Bayesian inversion method based on the parameterization of the Chapman model. The proposed method is based on 1) inelastic attribute inversion by the FDAVO method and 2) Bayesian statistics for fluid identification. First, we invert the inelastic fracture parameters by formulating an error function, which is used to match observations and model data. Second, we identify fluid types by using a Markov random field a priori model considering data from various sources, such as prestack inversion and well logs. We consider the inelastic parameters to take advantage of the viscosity differences among the different fluids possible. Finally, we use the maximum posteriori probability for obtaining the best lithology/fluid identification results.展开更多
A multifunctional polymeric nanofilm of triazinedithiolsilane monosodium salt, which can resist corrosion and activatecopper surface concurrently, was prepared by galvanostatic technique and the following hydrolysis-c...A multifunctional polymeric nanofilm of triazinedithiolsilane monosodium salt, which can resist corrosion and activatecopper surface concurrently, was prepared by galvanostatic technique and the following hydrolysis-condensation approach.Electrochemical tests were carried out to evaluate the resistant ability of nanofilm. The changes of functional groups atop thenanofilms were monitored with Fourier transform infrared spectroscopy (FT-IR) and contact angles (CA) simultaneously. Thechemical composition and the morphology of the polymeric nanofilm were investigated by X-ray photoelectron spectroscopy (XPS)and scanning electron microscope (SEM), respectively. The results reveal that the preferentially developed disulfide units protect thecopper during the whole preparation process, and the subsequently hydrolyzed nanofilms without/with heating shape into newinterface phases bearing the multifunctionality. This multifunctional interface (the polymeric nanofilm on copper surface) opens upthe possibilities for other OH-containing reagents to be anchored onto copper surface in demanding researches or industrialapplications.展开更多
The effects of BTHP on Ca 2+ independent action potential and the two components of delayed rectifier potassium currents were studied in guinea pig single ventricular myocytes by using whole cell patch clamp tec...The effects of BTHP on Ca 2+ independent action potential and the two components of delayed rectifier potassium currents were studied in guinea pig single ventricular myocytes by using whole cell patch clamp technique. BTHP 30 μmol·L -1 significantly prolonged APD 90 from 143±16 ms to 184±21 ms ( P 【0.01, n=5) without affecting either the RP or APA, and the APD prolonging effects of BTHP were independent of extracellular Ca 2+ . BTHP inhibited both I kr (IC 50 =7 9 μmol·L -1 ) and I ks (IC 50 =22 4 μmol·L -1 ) in a concentration dependent fashion. The results demon strated that BTHP had no obvious selectivity for I kr and I ks .展开更多
This paper outlines the significance of enhancing the instantaneous protection reliability of low voltage circuit breakers and describes their main failure modes. The instantaneous failure mechanism of low voltage cir...This paper outlines the significance of enhancing the instantaneous protection reliability of low voltage circuit breakers and describes their main failure modes. The instantaneous failure mechanism of low voltage circuit breakers was analyzed so that measures to improve instantaneous protection reliability can be determined. Furthermore, the theory of the instantaneous characteristics calibration device for low voltage circuit breakers and the method of eliminating the non-periodic component of test current are given in detail. Finally, the test results are presented.展开更多
The management and control of material flow forms the core of manufacturing execution systems (MES) in the petrochemical industry. The bottleneck in the application of MES is the ability to match the material-flow m...The management and control of material flow forms the core of manufacturing execution systems (MES) in the petrochemical industry. The bottleneck in the application of MES is the ability to match the material-flow model with the production processes. A dynamic material-flow model is proposed in this paper after an analysis of the material-flow characteristics of the production process in a petrochemical industry. The main material-flow events are described, including the movement, storage, shifting, recycling, and elimination of the materials. The spatial and temporal characters of the material-flow events are described, and the material-flow model is constructed. The dynamic material-flow model introduced herein is the basis for other subsystems in the MES. In addition, it is the subsystem with the least scale in MES. The dynamic-modeling method of material flow has been applied in the development of the SinoMES model. It helps the petrochemical plant to manage the entire flow information related to tanks and equipments from the aspects of measurement, storage, movement, and the remaining balance of the material. As a result, it matches the production process by error elimination and data reconciliation. In addition, it facilitates the integration of application modules into the MES and guarantees the potential development of SinoMES in future applications.展开更多
A new type of dehydration unit for natural gas was briefly described and its basic structure and working principles were presented. An indoor test rig for testing the unit performance was set up and the experimental r...A new type of dehydration unit for natural gas was briefly described and its basic structure and working principles were presented. An indoor test rig for testing the unit performance was set up and the experimental results were given. The results showed that the unit could attain a maximum dew point depression of about 20℃ without any need of external mechanical power and chemicals. The pressure loss ratio, shock wave and the flow rate had great influence on the dehydration characteristics. From the systematic analysis of the factors that affect the dehydration efficiency of the unit, the suggestions for improving the unit are put forward.展开更多
The EGR (exhaust gas recirculation) technique can greatly reduce the NOx emission of diesel engines, especially when an EGR cooler is employed. Numerical simulations are applied to study the flow field and temperature...The EGR (exhaust gas recirculation) technique can greatly reduce the NOx emission of diesel engines, especially when an EGR cooler is employed. Numerical simulations are applied to study the flow field and temperature distributions inside the EGR cooler. Three different models of EGR cooler are investigated, among which model A is a traditional one, and models B and C are improved by adding a helical baffle in the cooling area. In models B and C the entry directions of cooling water are different, which mostly influences the flow resistance. The results show that the improved structures not only lengthen the flow path of the cooling water, but also enhance the heat exchange rate between the cool and hot media. In conclusion we suggest that the improved structures are more powerful than the traditional one.展开更多
Wastewater treatment is a process that is vital to protecting both the environment and human health. At present, the most cost-effective way of treating wastewater is with biological treatment processes such as the ac...Wastewater treatment is a process that is vital to protecting both the environment and human health. At present, the most cost-effective way of treating wastewater is with biological treatment processes such as the activated sludge process, despite their long operating times. However, population increases have created a demand for more efficient means of wastewater treatment, Fluidization has been demonstrated to in- crease the efficiency of many processes in chemical and biochemical engineering, but it has not been widely used in large-scale wastewater treatment. At the University of Western Ontario, the circulating fluidized-bed bioreactor (CFBBR) was developed for treating wastewater. In this process, carrier particles develop a biofilm composed of bacteria and other microbes. The excellent mixing and mass transfer characteristics inherent to fluidization make this process very effective at treating both municipal and industrial wastewater. Studies of lab- and pilot-scale systems showed that the CFBBR can remove over 90% of the influent organic matter and 80% of the nitrogen, and produces less than one-third as much biological sludge as the activated sludge process. Due to its high efficiency, the CFBBR can also be used to treat wastewaters with high organic solid concentrations, which are more difficult to treat with conventional methods because they require longer residence times; the CFBBR can also be used to reduce the system size and footprint. In addition, it is much better at handling and recovering from dynamic loadings (i.e., varying influent volume and concentrations) than current systems. Overall, the CFBBR has been shown to be a very effective means of treating wastewa- ter, and to be capable of treating larger volumes of wastewater using a smaller reactor volume and a shorter residence time. In addition, its compact design holds potential for more geographically localized and isolat- ed wastewater treatment systems.展开更多
In the radiant section of cracking furnace,the thermal cracking process is highly coupled with turbulent flow,heat transfer and mass transfer.In this paper,a three-dimensional simulation of propane pyrolysis reactor t...In the radiant section of cracking furnace,the thermal cracking process is highly coupled with turbulent flow,heat transfer and mass transfer.In this paper,a three-dimensional simulation of propane pyrolysis reactor tube is performed based on a detailed kinetic radical cracking scheme,combined with a comprehensive rigorous computational fluid dynamics(CFD)model.The eddy-dissipation-concept(EDC)model is introduced to deal with turbulence-chemistry interaction of cracking gas,especially for the multi-step radical kinetics.Considering the high aspect ratio and severe gradient phenomenon,numerical strategies such as grid resolution and refinement,stepping method and relaxation technique at different levels are employed to accelerate convergence.Large scale of radial nonuniformity in the vicinity of the tube wall is investigated.Spatial distributions of each radical reaction rate are first studied,and made it possible to identify the dominant elementary reactions.Additionally,a series of operating conditions including the feedstock feed rate,wall temperature profile and heat flux profile towards the reactor tubes are investigated.The obtained results can be used as scientific guide for further technical retrofit and operation optimization aiming at high conversion and selectivity of pyrolysis process.展开更多
Stem cells from extra-or intrahepatic sources have been recently characterized and their usefulness for the generation of hepatocyte-like lineages has been demonstrated. Therefore, they are being increasingly consider...Stem cells from extra-or intrahepatic sources have been recently characterized and their usefulness for the generation of hepatocyte-like lineages has been demonstrated. Therefore, they are being increasingly considered for future applications in liver cell therapy. In that field, liver cell transplantation is currently regarded as a possible alternative to whole organ transplantation, while stem cells possess theoretical advantages on hepatocytes as they display higher in vitro culture performances and could be used in autologous transplant procedures. However, the current research on the hepatic fate of stem cells is still facing difficulties to demonstrate the acquisition of a full mature hepatocyte phenotype, both in vitro and in vivo. Furthermore, the lack of obvious demonstration of in vivo hepatocyte-like cell functionality remains associated to low repopulation rates obtained after current transplantation procedures. The present review focuses on the current knowledge of the stem cell potential for liver therapy. We discuss the characteristics of the principal cell candidates and the methods to demonstrate their hepatic potential in vitro and in vivo. We finally address the question of the future clinical applications of stem cells for liver tissue repair and the technical aspects that remain to be investigated.展开更多
The flow field of gas and liquid in a φ150mm rotating-stream-tray (RST) scrubber is simulated by using computational fluid dynamic (CFD) method. The sismulation is based on the two-equation RNG κ-ε turbulence model...The flow field of gas and liquid in a φ150mm rotating-stream-tray (RST) scrubber is simulated by using computational fluid dynamic (CFD) method. The sismulation is based on the two-equation RNG κ-ε turbulence model, Eulerian multiphase model, and a real-shape 3D model with a huge number of meshes. The simulation results include detailed information about velocity, pressure, volume fraction and so on. Some features of the flow field are obtained: liquid is atomized in a thin annular zone; a high velocity air zone prevents water drops at the bottom from flying towards the wall; the pressure varies sharply at the end of blades and so on. The results will be helpful for structure optimization and engineering design.展开更多
基金This work was supported by the National Natural Science Foundation of China (No.11074003) and the Key Program of Educational Commission of Anhui Province of China (No.KJ2010AI32). For the help of Prof. J. L. Zhao at Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences in sample preparation is greatly appreciated.
文摘The intra- and inter-band relaxation dynamics of CdSe/CdS/ZnS core/shell/shell quantum dots are investigated with the aid of time-resolved nonlinear transmission spectra which are obtained using femtosecond pump-probe technique. By selectively exciting the core and shell carrier, the dynamics are studied in detail. Carrier relaxation is found faster in the conduction band of the CdS shell (about 130 fs) than that in the conduction band of the CdSe core (about 400 fs). From the experiments it is distinctly demonstrated the existence of the defect states in the interface between the CdSe core and the CdS shell, indicating that ultrafast spectroscopy might be a suitable tool in studying interface and surface morphology properties in nanosystems.
基金Innovation Foundation of Aerospace Science and Technology(CASC200902)~~
文摘An approach based on equivalent mechanics theory and computational fluid dynamics (CFD) technology is proposed to estimate dynamical influence of propellant sloshing on the spacecraft. A mechanical model is estab- lished by using CFD technique and packed as a "sloshing" block used in spacecraft guidance navigation and control (GNC) simulation loop. The block takes motion characteristics of the spacecraft as inputs and outputs of pertur- bative force and torques induced by propellant sloshing, thus it is more convenient for analyzing coupling effect between propellant sloshing dynamic and spacecraft GNC than using CFD packages. An example demonstrates the accuracy and the superiority of the approach. Then, the deducing process is applied to practical cases, and simulation results validate that the proposed approach is efficient for identifying the problems induced by sloshing and evaluating effectiveness of several typical designs of sloshing suppression.
基金supported by the 973 Program of China(No.2013CB429805)the National Natural Science Foundation of China(No.41174080)
文摘A key problem in seismic inversion is the identification of the reservoir fluids. Elastic parameters, such as seismic wave velocity and formation density, do not have sufficient sensitivity, thus, the conventional amplitude-versus-offset(AVO) method is not applicable. The frequency-dependent AVO method considers the dependency of the seismic amplitude to frequency and uses this dependency to obtain information regarding the fluids in the reservoir fractures. We propose an improved Bayesian inversion method based on the parameterization of the Chapman model. The proposed method is based on 1) inelastic attribute inversion by the FDAVO method and 2) Bayesian statistics for fluid identification. First, we invert the inelastic fracture parameters by formulating an error function, which is used to match observations and model data. Second, we identify fluid types by using a Markov random field a priori model considering data from various sources, such as prestack inversion and well logs. We consider the inelastic parameters to take advantage of the viscosity differences among the different fluids possible. Finally, we use the maximum posteriori probability for obtaining the best lithology/fluid identification results.
基金Project(2013DFR40700)supported by International S&T Cooperation Program of ChinaProjects(21174034,51003019,51302280)supported by the National Natural Science Foundation of China
文摘A multifunctional polymeric nanofilm of triazinedithiolsilane monosodium salt, which can resist corrosion and activatecopper surface concurrently, was prepared by galvanostatic technique and the following hydrolysis-condensation approach.Electrochemical tests were carried out to evaluate the resistant ability of nanofilm. The changes of functional groups atop thenanofilms were monitored with Fourier transform infrared spectroscopy (FT-IR) and contact angles (CA) simultaneously. Thechemical composition and the morphology of the polymeric nanofilm were investigated by X-ray photoelectron spectroscopy (XPS)and scanning electron microscope (SEM), respectively. The results reveal that the preferentially developed disulfide units protect thecopper during the whole preparation process, and the subsequently hydrolyzed nanofilms without/with heating shape into newinterface phases bearing the multifunctionality. This multifunctional interface (the polymeric nanofilm on copper surface) opens upthe possibilities for other OH-containing reagents to be anchored onto copper surface in demanding researches or industrialapplications.
文摘The effects of BTHP on Ca 2+ independent action potential and the two components of delayed rectifier potassium currents were studied in guinea pig single ventricular myocytes by using whole cell patch clamp technique. BTHP 30 μmol·L -1 significantly prolonged APD 90 from 143±16 ms to 184±21 ms ( P 【0.01, n=5) without affecting either the RP or APA, and the APD prolonging effects of BTHP were independent of extracellular Ca 2+ . BTHP inhibited both I kr (IC 50 =7 9 μmol·L -1 ) and I ks (IC 50 =22 4 μmol·L -1 ) in a concentration dependent fashion. The results demon strated that BTHP had no obvious selectivity for I kr and I ks .
基金Project (No. 043804411) supported by the Tianjin Natural ScienceFoundation, China
文摘This paper outlines the significance of enhancing the instantaneous protection reliability of low voltage circuit breakers and describes their main failure modes. The instantaneous failure mechanism of low voltage circuit breakers was analyzed so that measures to improve instantaneous protection reliability can be determined. Furthermore, the theory of the instantaneous characteristics calibration device for low voltage circuit breakers and the method of eliminating the non-periodic component of test current are given in detail. Finally, the test results are presented.
基金the National High Technology Research and Development Program of China (No.2007AA04Z191).
文摘The management and control of material flow forms the core of manufacturing execution systems (MES) in the petrochemical industry. The bottleneck in the application of MES is the ability to match the material-flow model with the production processes. A dynamic material-flow model is proposed in this paper after an analysis of the material-flow characteristics of the production process in a petrochemical industry. The main material-flow events are described, including the movement, storage, shifting, recycling, and elimination of the materials. The spatial and temporal characters of the material-flow events are described, and the material-flow model is constructed. The dynamic material-flow model introduced herein is the basis for other subsystems in the MES. In addition, it is the subsystem with the least scale in MES. The dynamic-modeling method of material flow has been applied in the development of the SinoMES model. It helps the petrochemical plant to manage the entire flow information related to tanks and equipments from the aspects of measurement, storage, movement, and the remaining balance of the material. As a result, it matches the production process by error elimination and data reconciliation. In addition, it facilitates the integration of application modules into the MES and guarantees the potential development of SinoMES in future applications.
文摘A new type of dehydration unit for natural gas was briefly described and its basic structure and working principles were presented. An indoor test rig for testing the unit performance was set up and the experimental results were given. The results showed that the unit could attain a maximum dew point depression of about 20℃ without any need of external mechanical power and chemicals. The pressure loss ratio, shock wave and the flow rate had great influence on the dehydration characteristics. From the systematic analysis of the factors that affect the dehydration efficiency of the unit, the suggestions for improving the unit are put forward.
文摘The EGR (exhaust gas recirculation) technique can greatly reduce the NOx emission of diesel engines, especially when an EGR cooler is employed. Numerical simulations are applied to study the flow field and temperature distributions inside the EGR cooler. Three different models of EGR cooler are investigated, among which model A is a traditional one, and models B and C are improved by adding a helical baffle in the cooling area. In models B and C the entry directions of cooling water are different, which mostly influences the flow resistance. The results show that the improved structures not only lengthen the flow path of the cooling water, but also enhance the heat exchange rate between the cool and hot media. In conclusion we suggest that the improved structures are more powerful than the traditional one.
文摘Wastewater treatment is a process that is vital to protecting both the environment and human health. At present, the most cost-effective way of treating wastewater is with biological treatment processes such as the activated sludge process, despite their long operating times. However, population increases have created a demand for more efficient means of wastewater treatment, Fluidization has been demonstrated to in- crease the efficiency of many processes in chemical and biochemical engineering, but it has not been widely used in large-scale wastewater treatment. At the University of Western Ontario, the circulating fluidized-bed bioreactor (CFBBR) was developed for treating wastewater. In this process, carrier particles develop a biofilm composed of bacteria and other microbes. The excellent mixing and mass transfer characteristics inherent to fluidization make this process very effective at treating both municipal and industrial wastewater. Studies of lab- and pilot-scale systems showed that the CFBBR can remove over 90% of the influent organic matter and 80% of the nitrogen, and produces less than one-third as much biological sludge as the activated sludge process. Due to its high efficiency, the CFBBR can also be used to treat wastewaters with high organic solid concentrations, which are more difficult to treat with conventional methods because they require longer residence times; the CFBBR can also be used to reduce the system size and footprint. In addition, it is much better at handling and recovering from dynamic loadings (i.e., varying influent volume and concentrations) than current systems. Overall, the CFBBR has been shown to be a very effective means of treating wastewa- ter, and to be capable of treating larger volumes of wastewater using a smaller reactor volume and a shorter residence time. In addition, its compact design holds potential for more geographically localized and isolat- ed wastewater treatment systems.
基金Supported by the National Science&Technology Supporting Plan(2012BAF05B00)the National Basic Research Program(2012CB720500)
文摘In the radiant section of cracking furnace,the thermal cracking process is highly coupled with turbulent flow,heat transfer and mass transfer.In this paper,a three-dimensional simulation of propane pyrolysis reactor tube is performed based on a detailed kinetic radical cracking scheme,combined with a comprehensive rigorous computational fluid dynamics(CFD)model.The eddy-dissipation-concept(EDC)model is introduced to deal with turbulence-chemistry interaction of cracking gas,especially for the multi-step radical kinetics.Considering the high aspect ratio and severe gradient phenomenon,numerical strategies such as grid resolution and refinement,stepping method and relaxation technique at different levels are employed to accelerate convergence.Large scale of radial nonuniformity in the vicinity of the tube wall is investigated.Spatial distributions of each radical reaction rate are first studied,and made it possible to identify the dominant elementary reactions.Additionally,a series of operating conditions including the feedstock feed rate,wall temperature profile and heat flux profile towards the reactor tubes are investigated.The obtained results can be used as scientific guide for further technical retrofit and operation optimization aiming at high conversion and selectivity of pyrolysis process.
文摘Stem cells from extra-or intrahepatic sources have been recently characterized and their usefulness for the generation of hepatocyte-like lineages has been demonstrated. Therefore, they are being increasingly considered for future applications in liver cell therapy. In that field, liver cell transplantation is currently regarded as a possible alternative to whole organ transplantation, while stem cells possess theoretical advantages on hepatocytes as they display higher in vitro culture performances and could be used in autologous transplant procedures. However, the current research on the hepatic fate of stem cells is still facing difficulties to demonstrate the acquisition of a full mature hepatocyte phenotype, both in vitro and in vivo. Furthermore, the lack of obvious demonstration of in vivo hepatocyte-like cell functionality remains associated to low repopulation rates obtained after current transplantation procedures. The present review focuses on the current knowledge of the stem cell potential for liver therapy. We discuss the characteristics of the principal cell candidates and the methods to demonstrate their hepatic potential in vitro and in vivo. We finally address the question of the future clinical applications of stem cells for liver tissue repair and the technical aspects that remain to be investigated.
基金Supported by the National 863 Project (2001AA642030-1) and Zhejiang Provincial Key Research Project (010007037).
文摘The flow field of gas and liquid in a φ150mm rotating-stream-tray (RST) scrubber is simulated by using computational fluid dynamic (CFD) method. The sismulation is based on the two-equation RNG κ-ε turbulence model, Eulerian multiphase model, and a real-shape 3D model with a huge number of meshes. The simulation results include detailed information about velocity, pressure, volume fraction and so on. Some features of the flow field are obtained: liquid is atomized in a thin annular zone; a high velocity air zone prevents water drops at the bottom from flying towards the wall; the pressure varies sharply at the end of blades and so on. The results will be helpful for structure optimization and engineering design.