In this paper, robot path planning in globally unknown environments is studied. Using the rolling optimization concept in predictive control for reference, a new strategy of path planning for a mobile robot, based on ...In this paper, robot path planning in globally unknown environments is studied. Using the rolling optimization concept in predictive control for reference, a new strategy of path planning for a mobile robot, based on rolling windows, is proposed. The method makes full use of the real-time local environmental information detected by the robot and the on-line path planning is carried on in a rolling style. Optimization and feedback are combined in a reasonable way. The convergence of the planning algorithm is also discussed.展开更多
基金the National 973 Plan (Grant No. G1998030415) and the National Natural Science Foundation of China (Grant No. 69774004) and the National 863 Program (Grant No. 9805-18).
文摘In this paper, robot path planning in globally unknown environments is studied. Using the rolling optimization concept in predictive control for reference, a new strategy of path planning for a mobile robot, based on rolling windows, is proposed. The method makes full use of the real-time local environmental information detected by the robot and the on-line path planning is carried on in a rolling style. Optimization and feedback are combined in a reasonable way. The convergence of the planning algorithm is also discussed.