In this paper we consider a Markov chain model in an ATM network, which has been studied by Dag and Stavrakakis. On the basis of the iterative formulas obtained by Dag and Stavrakakis, we obtain the explicit analytica...In this paper we consider a Markov chain model in an ATM network, which has been studied by Dag and Stavrakakis. On the basis of the iterative formulas obtained by Dag and Stavrakakis, we obtain the explicit analytical expression of the transition probability matrix. It is very simple to calculate the transition probabilities of the Markov chain by these expressions. In addition, we obtain some results about the structure of the transition probability matrix, which are helpful in numerical calculation and theoretical analysis.展开更多
基金This work is supported by the National Key Project of China(No 970211017,the National Natural Science Foundation of China(No,10271102)and Hebei Province Doctoral Foundation(No.2002131)
文摘In this paper we consider a Markov chain model in an ATM network, which has been studied by Dag and Stavrakakis. On the basis of the iterative formulas obtained by Dag and Stavrakakis, we obtain the explicit analytical expression of the transition probability matrix. It is very simple to calculate the transition probabilities of the Markov chain by these expressions. In addition, we obtain some results about the structure of the transition probability matrix, which are helpful in numerical calculation and theoretical analysis.