We consider the problem of energy efficiency aware dynamic adaptation of data transmission rate and transmission power of the users in carrier sensing based Wireless Local Area Networks(WLANs)in the presence of path l...We consider the problem of energy efficiency aware dynamic adaptation of data transmission rate and transmission power of the users in carrier sensing based Wireless Local Area Networks(WLANs)in the presence of path loss,Rayleigh fading and log-normal shadowing.For a data packet transmission,we formulate an optimization problem,solve the problem,and propose a rate and transmission power adaptation scheme with a restriction methodology of data packet transmission for achieving the optimal energy efficiency.In the restriction methodology of data packet transmission,a user does not transmit a data packet if the instantaneous channel gain of the user is lower than a threshold.To evaluate the performance of the proposed scheme,we develop analytical models for computing the throughput and energy efficiency of WLANs under the proposed scheme considering a saturation traffic condition.We then validate the analytical models via simulation.We find that the proposed scheme provides better throughput and energy efficiency with acceptable throughput fairness if the restriction methodology of data packet transmission is included.By means of the analytical models and simulations,we demonstrate that the proposed scheme provides significantly higher throughput,energy efficiency and fairness index than a traditional non-adaptive scheme and an existing most relevant adaptive scheme.Throughput and energy efficiency gains obtained by the proposed scheme with respect to the existing adapting scheme are about 75%and 103%,respectively,for a fairness index of 0.8.We also study the effect of various system parameters on throughput and energy efficiency and provide various engineering insights.展开更多
Blackboard academic suite is an excellent teaching software,Design of the principle of remote sensing network course based on it includes five kernel parts:course content construction,experimental process recurrence,i...Blackboard academic suite is an excellent teaching software,Design of the principle of remote sensing network course based on it includes five kernel parts:course content construction,experimental process recurrence,interactive cooperation creation,exercises evaluation,course data evaluation and feedback.Teacher also should use some tactics to motivate students use blackboard academic suite,so as to improve students' learning interest and initiative,and teaching quality of the principle of remote sensing course.展开更多
An energy-saving algorithm for wireless sensor networks based on network coding and compressed sensing (CS-NCES) is proposed in this paper. Along with considering the correlations of data spatial and temporal, the a...An energy-saving algorithm for wireless sensor networks based on network coding and compressed sensing (CS-NCES) is proposed in this paper. Along with considering the correlations of data spatial and temporal, the algorithm utilizes the similarities between the encoding matrix of network coding and the measurement matrix of compressed sensing. The source node firstly encodes the data, then compresses the coding data by cot-npressed sensing over finite fields. Compared with the network coding scheme, simulation results show that CS-NCES reduces the energy consumption about 25.30/0-34.50/0 and improves the efficiency of data reconstruction about 1.56%- 5.98%. The proposed algorithm can not only enhance the usability of network coding in wireless sensor networks, but also improve the network performance.展开更多
In marine wireless sensor networks(MWSNs),an appropriate routing protocol is the key to the collaborative collection and efficient transmission of massive data.However,designing an appropriate routing protocol under t...In marine wireless sensor networks(MWSNs),an appropriate routing protocol is the key to the collaborative collection and efficient transmission of massive data.However,designing an appropriate routing protocol under the condition of sparse marine node deployment,highly dynamic network topology,and limited node energy is complicated.Moreover,the absence of continuous endto-end connection introduces further difficulties in the design of routing protocols.In this case,we present a novel energy-efficient opportunistic routing(Novel Energy-Efficient Opportunistic Routing,NEOR)protocol for MWSNs that is based on compressed sensing and power control.First,a lightweight time-series prediction method-weighted moving average method is proposed to predict the packet advancement value such that the number of location information that is exchanged among a node and its neighbor nodes can be minimized.Second,an adaptive power control mechanism is presented to determine the optimal transmitting power and candidate nodeset on the basis of node mobility,packet advancement,communication link quality,and remaining node energy.Subsequently,a timer-based scheduling algorithm is utilized to coordinate packet forwarding to avoid packet conflict.Furthermore,we introduce the compressed sensing theory to compress perceptual data at source nodes and reconstruct the original data at sink nodes.Therefore,energy consumption in the MWSNs is greatly reduced due to the decrease in the amount of data perception and transmission.Numerical simulation experiments are carried out in a wide range of marine scenarios to verify the superiority of our approach over selected benchmark algorithms.展开更多
Wireless sensors networks (WSNs) combined with cognitive radio have developed and solved the limited space of the frequency spectrum. In this paper, we propose different types of spectrums sensing and their own decisi...Wireless sensors networks (WSNs) combined with cognitive radio have developed and solved the limited space of the frequency spectrum. In this paper, we propose different types of spectrums sensing and their own decisions depend on the probabilities that applied into fusion center, and how these probabilities’ techniques help to enhance the energy consumption of WSNs. In the same way, the importance of designing balanced distribution between the wireless sensors networks and their own sinks. This research also provides an overview of security issues in CR-WSN, especially in Spectrum Sensing Data Falsification (SSDF) attacks that enforces harmful effects on spectrum sensing and spectrum sharing. We adopt OR rule as four types of CRSN sensing protocolin greenhouses application by using Matlab and Netsim simulators. Our results show that the designing balanced wireless sensors and their sinks in greenhouses are very significant to decrease the energy, which is due to the traffic congestion in the sink range area. Furthermore, by applying OR rule has enhanced the energy consumption, and improved the sensors network lifetime compared to cognitive radio network.展开更多
A serious threat to cognitive radio networks that sense the spectrum in a cooperative manner is the transmission of false spectrum sensing data by malicious sensor nodes. SNR fluctuations due to wireless channel effec...A serious threat to cognitive radio networks that sense the spectrum in a cooperative manner is the transmission of false spectrum sensing data by malicious sensor nodes. SNR fluctuations due to wireless channel effects complicate handling such attackers even further. This enforces the system to acquire authentication. Actually, the decision maker needs to determine the reliability or trustworthiness of the shared data. In this paper, the evaluation process is considered as an estimation dilemma on a set of evidences obtained through sensor nodes that are coordinated in an underlying wireless sensor network. Then, a likelihood-based computational trust evaluation algorithm is proposed to determine the trustworthiness of each sensor node's data. The proposed procedure just uses the information which is obtained from the sensor nodes without any presumptions about node’s reliability. Numerical results confirm the effectiveness of the algorithm in eliminating malicious nodes or faulty nodes which are not necessarily conscious attackers.展开更多
Connected autonomous vehicles(CAVs)are a promising paradigm for implementing intelligent transportation systems.However,in CAVs scenarios,the sensing blind areas cause serious safety hazards.Existing vehicle-to-vehicl...Connected autonomous vehicles(CAVs)are a promising paradigm for implementing intelligent transportation systems.However,in CAVs scenarios,the sensing blind areas cause serious safety hazards.Existing vehicle-to-vehicle(V2V)technology is difficult to break through the sensing blind area and ensure reliable sensing information.To overcome these problems,considering infrastructures as a means to extend the sensing range is feasible based on the integrated sensing and communication(ISAC)technology.The mmWave base station(mmBS)transmits multiple beams consisting of communication beams and sensing beams.The sensing beams are responsible for sensing objects within the CAVs blind area,while the communication beams are responsible for transmitting the sensed information to the CAVs.To reduce the impact of inter-beam interference,a joint multiple beamwidth and power allocation(JMBPA)algorithm is proposed.By maximizing the communication transmission rate under the sensing constraints.The proposed non-convex optimization problem is transformed into a standard difference of two convex functions(D.C.)problem.Finally,the superiority of the lutions.The average transmission rate of communication beams remains over 3.4 Gbps,showcasing a significant improvement compared to other algorithms.Moreover,the satisfaction of sensing services remains steady.展开更多
A great challenge faced by wireless sensor networks(WSNs) is to reduce energy consumption of sensor nodes. Fortunately, the data gathering via random sensing can save energy of sensor nodes. Nevertheless, its randomne...A great challenge faced by wireless sensor networks(WSNs) is to reduce energy consumption of sensor nodes. Fortunately, the data gathering via random sensing can save energy of sensor nodes. Nevertheless, its randomness and density usually result in difficult implementations, high computation complexity and large storage spaces in practical settings. So the deterministic sparse sensing matrices are desired in some situations. However,it is difficult to guarantee the performance of deterministic sensing matrix by the acknowledged metrics. In this paper, we construct a class of deterministic sparse sensing matrices with statistical versions of restricted isometry property(St RIP) via regular low density parity check(RLDPC) matrices. The key idea of our construction is to achieve small mutual coherence of the matrices by confining the column weights of RLDPC matrices such that St RIP is satisfied. Besides, we prove that the constructed sensing matrices have the same scale of measurement numbers as the dense measurements. We also propose a data gathering method based on RLDPC matrix. Experimental results verify that the constructed sensing matrices have better reconstruction performance, compared to the Gaussian, Bernoulli, and CSLDPC matrices. And we also verify that the data gathering via RLDPC matrix can reduce energy consumption of WSNs.展开更多
In view of the uncertainty of the status of primary users in cognitive networks and the fact that the random detection strategy cannot guarantee cognitive users to accurately find available channels,this paper propose...In view of the uncertainty of the status of primary users in cognitive networks and the fact that the random detection strategy cannot guarantee cognitive users to accurately find available channels,this paper proposes a joint random detection strategy using the idle cognitive users in cognitive wireless networks.After adding idle cognitive users for detection,the compressed sensing model is employed to describe the number of available channels obtained by the cognitive base station to derive the detection performance of the cognitive network at this time.Both theoretical analysis and simulation results show that using idle cognitive users can reduce service delay and improve the throughput of cognitive networks.After considering the time occupied by cognitive users to report detection information,the optimal participation number of idle cognitive users in joint detection is obtained through the optimization algorithm.展开更多
For node awakening in wireless multi-sensor networks, an algorithm is put forward for three dimensional tar- get tracking. To monitor target dynamically in three dimensional area by controlling nodes, we constract vir...For node awakening in wireless multi-sensor networks, an algorithm is put forward for three dimensional tar- get tracking. To monitor target dynamically in three dimensional area by controlling nodes, we constract vir- tual force between moving target and the current sense node depending on the virtual potential method, then select the next sense node with information gain function, so that when target randomly move in the specific three dimensional area, the maximum sensing ratio of motion trajectory is get with few nodes. The proposed algorithm is verified from the simulations.展开更多
In order to achieve the acoustic signal distributed acquisition of stored grain pests, a novel acoustic signal acquisition system was presented based on the wireless sensor networks. And the system architecture, hardw...In order to achieve the acoustic signal distributed acquisition of stored grain pests, a novel acoustic signal acquisition system was presented based on the wireless sensor networks. And the system architecture, hardware configuration, and software were introduced in detail. Considering bandwidth limitation of wireless sensor networks, random sampling algorithm based on the compressed sensing theory was proposed. The developed acoustic signal acquisition system was applied in sampling the crawl acoustic signal of Tribolinm castaneum Herbst adults in granary. Preliminary experimentation indicated the rationality and practicability of the developed system and the proposed algorithm. They can implement the remote, real-time, and reliable wireless transmission for the acoustic signal sampled data of multiple points stored grain pests effectively.展开更多
Distributed Compressed Sensing (DCS) is an emerging field that exploits both intra- and inter-signal correlation structures and enables new distributed coding algorithms for multiple signal ensembles in wireless senso...Distributed Compressed Sensing (DCS) is an emerging field that exploits both intra- and inter-signal correlation structures and enables new distributed coding algorithms for multiple signal ensembles in wireless sensor networks. The DCS theory rests on the joint sparsity of a multi-signal ensemble. In this paper we propose a new mobile-agent-based Adaptive Data Fusion (ADF) algorithm to determine the minimum number of measurements each node required for perfectly joint reconstruction of multiple signal ensembles. We theoretically show that ADF provides the optimal strategy with as minimum total number of measurements as possible and hence reduces communication cost and network load. Simulation results indicate that ADF enjoys better performance than DCS and mobile-agent-based full data fusion algorithm including reconstruction performance and network energy efficiency.展开更多
An extensive area implementation of fully observed greenhouses motivates on research, especially in remote greenhouses. However, implementation of wireless sensor networks (WSNs) is still needed for investigation. Cog...An extensive area implementation of fully observed greenhouses motivates on research, especially in remote greenhouses. However, implementation of wireless sensor networks (WSNs) is still needed for investigation. Cognitive radio sensor networks (CRSNs) took advantage of using the cognitive radio (CR) concept to which allowed wireless sensor networks to dynamically access into white space channels which is unused channels. In this paper, we adopted the Generalized Implicit-OR as CRSN sensing protocol to reduce the energy consumption and increase the network lifetime in multiple numbers of greenhouses. Our results showed that enhanced energy consumption and improved network lifetime compared to ordinary WSN.展开更多
Existing research on data collection using wireless mobile vehicle network emphasizes the reliable delivery of information.However,other performance requirements such as life cycle of nodes,stability and security are ...Existing research on data collection using wireless mobile vehicle network emphasizes the reliable delivery of information.However,other performance requirements such as life cycle of nodes,stability and security are not set as primary design objectives.This makes data collection ability of vehicular nodes in real application environment inferior.By considering the features of nodes in wireless IoV,such as large scales of deployment,volatility and low time delay,an efficient data collection algorithm is proposed for mobile vehicle network environment.An adaptive sensing model is designed to establish vehicular data collection protocol.The protocol adopts group management in model communication.The vehicular sensing node in group can adjust network sensing chain according to sensing distance threshold with surrounding nodes.It will dynamically choose a combination of network sensing chains on basis of remaining energy and location characteristics of surrounding nodes.In addition,secure data collection between sensing nodes is undertaken as well.The simulation and experiments show that the vehicular node can realize secure and real-time data collection.Moreover,the proposed algorithm is superior in vehicular network life cycle,power consumption and reliability of data collection by comparing to other algorithms.展开更多
An Adaptive Measurement Scheme (AMS) is investigated with Compressed Sensing (CS) theory in Cognitive Wireless Sensor Network (C-WSN). Local sensing information is collected via energy detection with Analog-to-Informa...An Adaptive Measurement Scheme (AMS) is investigated with Compressed Sensing (CS) theory in Cognitive Wireless Sensor Network (C-WSN). Local sensing information is collected via energy detection with Analog-to-Information Converter (AIC) at massive cognitive sensors, and sparse representation is considered with the exploration of spatial temporal correlation structure of detected signals. Adaptive measurement matrix is designed in AMS, which is based on maximum energy subset selection. Energy subset is calculated with sparse transformation of sensing information, and maximum energy subset is selected as the row vector of adaptive measurement matrix. In addition, the measurement matrix is constructed by orthogonalization of those selected row vectors, which also satisfies the Restricted Isometry Property (RIP) in CS theory. Orthogonal Matching Pursuit (OMP) reconstruction algorithm is implemented at sink node to recover original information. Simulation results are performed with the comparison of Random Measurement Scheme (RMS). It is revealed that, signal reconstruction effect based on AMS is superior to conventional RMS Gaussian measurement. Moreover, AMS has better detection performance than RMS at lower compression rate region, and it is suitable for large-scale C-WSN wideband spectrum sensing.展开更多
In order to apply compressive sensing in wireless sensor network, inside the nodes cluster classified by the spatial correlation, we propose that a cluster head adopts free space optical communication with space divis...In order to apply compressive sensing in wireless sensor network, inside the nodes cluster classified by the spatial correlation, we propose that a cluster head adopts free space optical communication with space division multiple access, and a sensor node uses a modulating retro-reflector for communication. Thus while a random sampling matrix is used to guide the establishment of links between head cluster and sensor nodes, the random linear projection is accomplished. To establish multiple links at the same time, an optical space division multiple access antenna is designed. It works in fixed beams switching mode and consists of optic lens with a large field of view(FOV), fiber array on the focal plane which is used to realize virtual channels segmentation, direction of arrival sensor, optical matrix switch and controller. Based on the angles of nodes' laser beams, by dynamically changing the route, optical matrix switch actualizes the multi-beam full duplex tracking receiving and transmission. Due to the structure of fiber array, there will be several fade zones both in the focal plane and in lens' FOV. In order to lower the impact of fade zones and harmonize multibeam, a fiber array adjustment is designed. By theoretical, simulated and experimental study, the antenna's qualitative feasibility is validated.展开更多
To further increase the throughput of wireless multi-hop networks,a distributed scheduling method is proposed,which takes physical interference model into account.It is assumed that nodes in the network can perform ph...To further increase the throughput of wireless multi-hop networks,a distributed scheduling method is proposed,which takes physical interference model into account.It is assumed that nodes in the network can perform physical carrier sensing,and the carrier sensing range can be set to different values.In the traditional carrier sensing mechanism,the carrier sensing range is computed under the protocol interference model,which is not accurate.Here the optimal carrier sensing range with physical interference model is achieved.Each sending node implements the distributed approach in three phases at each time slot,and all the concurrent transmissions are interference free.Good performance can be achieved under this scheduling approach.The approximation ratio of the distributed method to the optimal one is also proved.展开更多
Sensing in wireless local area network(WLAN) gains great interests recently. In this paper we focus on the multi-user WLAN sensing problem under the existing 802.11 standards. Multiple stations perform sensing with th...Sensing in wireless local area network(WLAN) gains great interests recently. In this paper we focus on the multi-user WLAN sensing problem under the existing 802.11 standards. Multiple stations perform sensing with the access point and transmit channel state information(CSI)report simultaneously on the basis of uplink-orthogonal frequency division multiple access(OFDMA). Considering the transmission resource consumed in CSI report and the padding wastage in OFDMA based CSI report, we optimize the CSI simplification and uplink resource unit(RU)allocation jointly, aiming to balance the sensing accuracy and padding wastage performances in WLAN sensing. We propose the minimize padding maximize efficiency(MPME) algorithm to solve the problem and evaluate the performance of the proposed algorithm through extensive simulations.展开更多
The increasing interest for wireless communication services and scarcity of radio spectrum resources have created the need for a more flexible and efficient usage of the radio frequency bands. Cognitive Radio (CR) eme...The increasing interest for wireless communication services and scarcity of radio spectrum resources have created the need for a more flexible and efficient usage of the radio frequency bands. Cognitive Radio (CR) emerges as an important trend for a solution to this problem. Spectrum sensing is a crucial function in a CR system. Cooperative spectrum sensing can overcome fading and shadowing effects, and hence increase the reliability of primary user detection. In this paper we consider a system model of a dedicated detect-andforward wireless sensor network (DetF WSN) for cooperative spectrum sensing with k-out-of-n decision fusion in the presence of reporting channels errors. Using this model we consider the design of a spatial reuse media access control (MAC) protocol based on TDMA/OFDMA to resolve conflicts and conserve resources for intra-WSN communication. The influence of the MAC protocol on spectrum sensing performance of the WSN is a key consideration. Two design approaches, using greedy and adaptive simulated annealing (ASA) algorithms, are considered in detail. Performance results assuming a grid network in a Rician fading environment are presented for the two design approaches.展开更多
文摘We consider the problem of energy efficiency aware dynamic adaptation of data transmission rate and transmission power of the users in carrier sensing based Wireless Local Area Networks(WLANs)in the presence of path loss,Rayleigh fading and log-normal shadowing.For a data packet transmission,we formulate an optimization problem,solve the problem,and propose a rate and transmission power adaptation scheme with a restriction methodology of data packet transmission for achieving the optimal energy efficiency.In the restriction methodology of data packet transmission,a user does not transmit a data packet if the instantaneous channel gain of the user is lower than a threshold.To evaluate the performance of the proposed scheme,we develop analytical models for computing the throughput and energy efficiency of WLANs under the proposed scheme considering a saturation traffic condition.We then validate the analytical models via simulation.We find that the proposed scheme provides better throughput and energy efficiency with acceptable throughput fairness if the restriction methodology of data packet transmission is included.By means of the analytical models and simulations,we demonstrate that the proposed scheme provides significantly higher throughput,energy efficiency and fairness index than a traditional non-adaptive scheme and an existing most relevant adaptive scheme.Throughput and energy efficiency gains obtained by the proposed scheme with respect to the existing adapting scheme are about 75%and 103%,respectively,for a fairness index of 0.8.We also study the effect of various system parameters on throughput and energy efficiency and provide various engineering insights.
基金supported by Main Course "Principle of Remote Sensing" of Chuxiong Normal University~~
文摘Blackboard academic suite is an excellent teaching software,Design of the principle of remote sensing network course based on it includes five kernel parts:course content construction,experimental process recurrence,interactive cooperation creation,exercises evaluation,course data evaluation and feedback.Teacher also should use some tactics to motivate students use blackboard academic suite,so as to improve students' learning interest and initiative,and teaching quality of the principle of remote sensing course.
文摘An energy-saving algorithm for wireless sensor networks based on network coding and compressed sensing (CS-NCES) is proposed in this paper. Along with considering the correlations of data spatial and temporal, the algorithm utilizes the similarities between the encoding matrix of network coding and the measurement matrix of compressed sensing. The source node firstly encodes the data, then compresses the coding data by cot-npressed sensing over finite fields. Compared with the network coding scheme, simulation results show that CS-NCES reduces the energy consumption about 25.30/0-34.50/0 and improves the efficiency of data reconstruction about 1.56%- 5.98%. The proposed algorithm can not only enhance the usability of network coding in wireless sensor networks, but also improve the network performance.
基金supported by the National Natural Science Foundation of China(Nos.52201403,52201401,52071200,52102397,61701299,51709167)the National Key Research and Development Program(No.2021YFC2801002)+4 种基金the China Postdoctoral Science Foundation(Nos.2021M 700790,2022M712027)the Fund of National Engineering Research Center for Water Transport Safety(No.A2022003)the Foundation for Jiangsu Key Laboratory of Traffic and Transportation Security(No.TTS2021-05)the Fund of Hubei Key Laboratory of Inland Shipping Technology(No.NHHY2021002)the Top-Notch Innovative Program for Postgraduates of Shanghai Maritime University(Nos.2019YBR006,2019YBR002).
文摘In marine wireless sensor networks(MWSNs),an appropriate routing protocol is the key to the collaborative collection and efficient transmission of massive data.However,designing an appropriate routing protocol under the condition of sparse marine node deployment,highly dynamic network topology,and limited node energy is complicated.Moreover,the absence of continuous endto-end connection introduces further difficulties in the design of routing protocols.In this case,we present a novel energy-efficient opportunistic routing(Novel Energy-Efficient Opportunistic Routing,NEOR)protocol for MWSNs that is based on compressed sensing and power control.First,a lightweight time-series prediction method-weighted moving average method is proposed to predict the packet advancement value such that the number of location information that is exchanged among a node and its neighbor nodes can be minimized.Second,an adaptive power control mechanism is presented to determine the optimal transmitting power and candidate nodeset on the basis of node mobility,packet advancement,communication link quality,and remaining node energy.Subsequently,a timer-based scheduling algorithm is utilized to coordinate packet forwarding to avoid packet conflict.Furthermore,we introduce the compressed sensing theory to compress perceptual data at source nodes and reconstruct the original data at sink nodes.Therefore,energy consumption in the MWSNs is greatly reduced due to the decrease in the amount of data perception and transmission.Numerical simulation experiments are carried out in a wide range of marine scenarios to verify the superiority of our approach over selected benchmark algorithms.
文摘Wireless sensors networks (WSNs) combined with cognitive radio have developed and solved the limited space of the frequency spectrum. In this paper, we propose different types of spectrums sensing and their own decisions depend on the probabilities that applied into fusion center, and how these probabilities’ techniques help to enhance the energy consumption of WSNs. In the same way, the importance of designing balanced distribution between the wireless sensors networks and their own sinks. This research also provides an overview of security issues in CR-WSN, especially in Spectrum Sensing Data Falsification (SSDF) attacks that enforces harmful effects on spectrum sensing and spectrum sharing. We adopt OR rule as four types of CRSN sensing protocolin greenhouses application by using Matlab and Netsim simulators. Our results show that the designing balanced wireless sensors and their sinks in greenhouses are very significant to decrease the energy, which is due to the traffic congestion in the sink range area. Furthermore, by applying OR rule has enhanced the energy consumption, and improved the sensors network lifetime compared to cognitive radio network.
文摘A serious threat to cognitive radio networks that sense the spectrum in a cooperative manner is the transmission of false spectrum sensing data by malicious sensor nodes. SNR fluctuations due to wireless channel effects complicate handling such attackers even further. This enforces the system to acquire authentication. Actually, the decision maker needs to determine the reliability or trustworthiness of the shared data. In this paper, the evaluation process is considered as an estimation dilemma on a set of evidences obtained through sensor nodes that are coordinated in an underlying wireless sensor network. Then, a likelihood-based computational trust evaluation algorithm is proposed to determine the trustworthiness of each sensor node's data. The proposed procedure just uses the information which is obtained from the sensor nodes without any presumptions about node’s reliability. Numerical results confirm the effectiveness of the algorithm in eliminating malicious nodes or faulty nodes which are not necessarily conscious attackers.
基金China Tele-com Research Institute Project(Grants No.HQBYG2200147GGN00)National Key R&D Program of China(2020YFB1807600)National Natural Science Foundation of China(NSFC)(Grant No.62022020).
文摘Connected autonomous vehicles(CAVs)are a promising paradigm for implementing intelligent transportation systems.However,in CAVs scenarios,the sensing blind areas cause serious safety hazards.Existing vehicle-to-vehicle(V2V)technology is difficult to break through the sensing blind area and ensure reliable sensing information.To overcome these problems,considering infrastructures as a means to extend the sensing range is feasible based on the integrated sensing and communication(ISAC)technology.The mmWave base station(mmBS)transmits multiple beams consisting of communication beams and sensing beams.The sensing beams are responsible for sensing objects within the CAVs blind area,while the communication beams are responsible for transmitting the sensed information to the CAVs.To reduce the impact of inter-beam interference,a joint multiple beamwidth and power allocation(JMBPA)algorithm is proposed.By maximizing the communication transmission rate under the sensing constraints.The proposed non-convex optimization problem is transformed into a standard difference of two convex functions(D.C.)problem.Finally,the superiority of the lutions.The average transmission rate of communication beams remains over 3.4 Gbps,showcasing a significant improvement compared to other algorithms.Moreover,the satisfaction of sensing services remains steady.
基金supported by the National Natural Science Foundation of China(61307121)ABRP of Datong(2017127)the Ph.D.’s Initiated Research Projects of Datong University(2013-B-17,2015-B-05)
文摘A great challenge faced by wireless sensor networks(WSNs) is to reduce energy consumption of sensor nodes. Fortunately, the data gathering via random sensing can save energy of sensor nodes. Nevertheless, its randomness and density usually result in difficult implementations, high computation complexity and large storage spaces in practical settings. So the deterministic sparse sensing matrices are desired in some situations. However,it is difficult to guarantee the performance of deterministic sensing matrix by the acknowledged metrics. In this paper, we construct a class of deterministic sparse sensing matrices with statistical versions of restricted isometry property(St RIP) via regular low density parity check(RLDPC) matrices. The key idea of our construction is to achieve small mutual coherence of the matrices by confining the column weights of RLDPC matrices such that St RIP is satisfied. Besides, we prove that the constructed sensing matrices have the same scale of measurement numbers as the dense measurements. We also propose a data gathering method based on RLDPC matrix. Experimental results verify that the constructed sensing matrices have better reconstruction performance, compared to the Gaussian, Bernoulli, and CSLDPC matrices. And we also verify that the data gathering via RLDPC matrix can reduce energy consumption of WSNs.
基金Mine IOT converged communication network architecture and its transmission technology and equipment(2017YFC0804405).
文摘In view of the uncertainty of the status of primary users in cognitive networks and the fact that the random detection strategy cannot guarantee cognitive users to accurately find available channels,this paper proposes a joint random detection strategy using the idle cognitive users in cognitive wireless networks.After adding idle cognitive users for detection,the compressed sensing model is employed to describe the number of available channels obtained by the cognitive base station to derive the detection performance of the cognitive network at this time.Both theoretical analysis and simulation results show that using idle cognitive users can reduce service delay and improve the throughput of cognitive networks.After considering the time occupied by cognitive users to report detection information,the optimal participation number of idle cognitive users in joint detection is obtained through the optimization algorithm.
文摘For node awakening in wireless multi-sensor networks, an algorithm is put forward for three dimensional tar- get tracking. To monitor target dynamically in three dimensional area by controlling nodes, we constract vir- tual force between moving target and the current sense node depending on the virtual potential method, then select the next sense node with information gain function, so that when target randomly move in the specific three dimensional area, the maximum sensing ratio of motion trajectory is get with few nodes. The proposed algorithm is verified from the simulations.
文摘In order to achieve the acoustic signal distributed acquisition of stored grain pests, a novel acoustic signal acquisition system was presented based on the wireless sensor networks. And the system architecture, hardware configuration, and software were introduced in detail. Considering bandwidth limitation of wireless sensor networks, random sampling algorithm based on the compressed sensing theory was proposed. The developed acoustic signal acquisition system was applied in sampling the crawl acoustic signal of Tribolinm castaneum Herbst adults in granary. Preliminary experimentation indicated the rationality and practicability of the developed system and the proposed algorithm. They can implement the remote, real-time, and reliable wireless transmission for the acoustic signal sampled data of multiple points stored grain pests effectively.
文摘Distributed Compressed Sensing (DCS) is an emerging field that exploits both intra- and inter-signal correlation structures and enables new distributed coding algorithms for multiple signal ensembles in wireless sensor networks. The DCS theory rests on the joint sparsity of a multi-signal ensemble. In this paper we propose a new mobile-agent-based Adaptive Data Fusion (ADF) algorithm to determine the minimum number of measurements each node required for perfectly joint reconstruction of multiple signal ensembles. We theoretically show that ADF provides the optimal strategy with as minimum total number of measurements as possible and hence reduces communication cost and network load. Simulation results indicate that ADF enjoys better performance than DCS and mobile-agent-based full data fusion algorithm including reconstruction performance and network energy efficiency.
文摘An extensive area implementation of fully observed greenhouses motivates on research, especially in remote greenhouses. However, implementation of wireless sensor networks (WSNs) is still needed for investigation. Cognitive radio sensor networks (CRSNs) took advantage of using the cognitive radio (CR) concept to which allowed wireless sensor networks to dynamically access into white space channels which is unused channels. In this paper, we adopted the Generalized Implicit-OR as CRSN sensing protocol to reduce the energy consumption and increase the network lifetime in multiple numbers of greenhouses. Our results showed that enhanced energy consumption and improved network lifetime compared to ordinary WSN.
基金supported by the National Nature Science Foundation of China(Grant61572188)A Project Supported by Scientif ic Research Fund of Hunan Provincial Education Department(14A047)+4 种基金the Natural Science Foundation of Fujian Province(Grant no.2014J05079)the Young and Middle-Aged Teachers Education Scientific Research Project of Fujian province(Grant nos.JA13248JA14254 and JA15368)the special scientific research funding for colleges and universities from Fujian Provincial Education Department(Grant no.JK2013043)the Research Project supported by Xiamen University of Technology(YKJ15019R)
文摘Existing research on data collection using wireless mobile vehicle network emphasizes the reliable delivery of information.However,other performance requirements such as life cycle of nodes,stability and security are not set as primary design objectives.This makes data collection ability of vehicular nodes in real application environment inferior.By considering the features of nodes in wireless IoV,such as large scales of deployment,volatility and low time delay,an efficient data collection algorithm is proposed for mobile vehicle network environment.An adaptive sensing model is designed to establish vehicular data collection protocol.The protocol adopts group management in model communication.The vehicular sensing node in group can adjust network sensing chain according to sensing distance threshold with surrounding nodes.It will dynamically choose a combination of network sensing chains on basis of remaining energy and location characteristics of surrounding nodes.In addition,secure data collection between sensing nodes is undertaken as well.The simulation and experiments show that the vehicular node can realize secure and real-time data collection.Moreover,the proposed algorithm is superior in vehicular network life cycle,power consumption and reliability of data collection by comparing to other algorithms.
基金Supported by the National Natural Science Foundation of China (No. 61102066, 60972058)the China Postdoctoral Science Foundation (No. 2012M511365)the Scientific Research Project of Zhejiang Provincial Education Department (No. Y201119890)
文摘An Adaptive Measurement Scheme (AMS) is investigated with Compressed Sensing (CS) theory in Cognitive Wireless Sensor Network (C-WSN). Local sensing information is collected via energy detection with Analog-to-Information Converter (AIC) at massive cognitive sensors, and sparse representation is considered with the exploration of spatial temporal correlation structure of detected signals. Adaptive measurement matrix is designed in AMS, which is based on maximum energy subset selection. Energy subset is calculated with sparse transformation of sensing information, and maximum energy subset is selected as the row vector of adaptive measurement matrix. In addition, the measurement matrix is constructed by orthogonalization of those selected row vectors, which also satisfies the Restricted Isometry Property (RIP) in CS theory. Orthogonal Matching Pursuit (OMP) reconstruction algorithm is implemented at sink node to recover original information. Simulation results are performed with the comparison of Random Measurement Scheme (RMS). It is revealed that, signal reconstruction effect based on AMS is superior to conventional RMS Gaussian measurement. Moreover, AMS has better detection performance than RMS at lower compression rate region, and it is suitable for large-scale C-WSN wideband spectrum sensing.
基金supported by the National Natural Science Foundation of China(61372069)and the"111"Project(B08038)
文摘In order to apply compressive sensing in wireless sensor network, inside the nodes cluster classified by the spatial correlation, we propose that a cluster head adopts free space optical communication with space division multiple access, and a sensor node uses a modulating retro-reflector for communication. Thus while a random sampling matrix is used to guide the establishment of links between head cluster and sensor nodes, the random linear projection is accomplished. To establish multiple links at the same time, an optical space division multiple access antenna is designed. It works in fixed beams switching mode and consists of optic lens with a large field of view(FOV), fiber array on the focal plane which is used to realize virtual channels segmentation, direction of arrival sensor, optical matrix switch and controller. Based on the angles of nodes' laser beams, by dynamically changing the route, optical matrix switch actualizes the multi-beam full duplex tracking receiving and transmission. Due to the structure of fiber array, there will be several fade zones both in the focal plane and in lens' FOV. In order to lower the impact of fade zones and harmonize multibeam, a fiber array adjustment is designed. By theoretical, simulated and experimental study, the antenna's qualitative feasibility is validated.
基金Supported by the National Basic Research Program of China(No.2007CB307105)the National Natural Science Foundation of China(No.60932005)
文摘To further increase the throughput of wireless multi-hop networks,a distributed scheduling method is proposed,which takes physical interference model into account.It is assumed that nodes in the network can perform physical carrier sensing,and the carrier sensing range can be set to different values.In the traditional carrier sensing mechanism,the carrier sensing range is computed under the protocol interference model,which is not accurate.Here the optimal carrier sensing range with physical interference model is achieved.Each sending node implements the distributed approach in three phases at each time slot,and all the concurrent transmissions are interference free.Good performance can be achieved under this scheduling approach.The approximation ratio of the distributed method to the optimal one is also proved.
基金supported in part by Sichuan Science and Technology Program (Nos. 2022NSFSC0912, 2020YJ0218,2021YFQ056 and 2022YFG0170)Fundamental Research Funds for the Central Universities (Nos. 2682021ZTPY051and 2682021CF019)+2 种基金NSFC (No. 62071393)NSFC High-Speed Rail Joint Foundation (No. U1834210)111 Project 111-2-14。
文摘Sensing in wireless local area network(WLAN) gains great interests recently. In this paper we focus on the multi-user WLAN sensing problem under the existing 802.11 standards. Multiple stations perform sensing with the access point and transmit channel state information(CSI)report simultaneously on the basis of uplink-orthogonal frequency division multiple access(OFDMA). Considering the transmission resource consumed in CSI report and the padding wastage in OFDMA based CSI report, we optimize the CSI simplification and uplink resource unit(RU)allocation jointly, aiming to balance the sensing accuracy and padding wastage performances in WLAN sensing. We propose the minimize padding maximize efficiency(MPME) algorithm to solve the problem and evaluate the performance of the proposed algorithm through extensive simulations.
文摘The increasing interest for wireless communication services and scarcity of radio spectrum resources have created the need for a more flexible and efficient usage of the radio frequency bands. Cognitive Radio (CR) emerges as an important trend for a solution to this problem. Spectrum sensing is a crucial function in a CR system. Cooperative spectrum sensing can overcome fading and shadowing effects, and hence increase the reliability of primary user detection. In this paper we consider a system model of a dedicated detect-andforward wireless sensor network (DetF WSN) for cooperative spectrum sensing with k-out-of-n decision fusion in the presence of reporting channels errors. Using this model we consider the design of a spatial reuse media access control (MAC) protocol based on TDMA/OFDMA to resolve conflicts and conserve resources for intra-WSN communication. The influence of the MAC protocol on spectrum sensing performance of the WSN is a key consideration. Two design approaches, using greedy and adaptive simulated annealing (ASA) algorithms, are considered in detail. Performance results assuming a grid network in a Rician fading environment are presented for the two design approaches.