期刊文献+
共找到343篇文章
< 1 2 18 >
每页显示 20 50 100
基于改进一维卷积神经网络模型的蛋清粉近红外光谱真实性检测
1
作者 祝志慧 李沃霖 +4 位作者 韩雨彤 金永涛 叶文杰 王巧华 马美湖 《食品科学》 北大核心 2025年第6期245-253,共9页
引入近红外光谱检测技术,构建改进一维卷积神经网络(one-dimensional convolutional neural network,1D-CNN)蛋清粉真实性检测模型。该模型基于1D-CNN模型,无需对光谱数据进行预处理;同时在网络中加入有效通道注意力模块和一维全局平均... 引入近红外光谱检测技术,构建改进一维卷积神经网络(one-dimensional convolutional neural network,1D-CNN)蛋清粉真实性检测模型。该模型基于1D-CNN模型,无需对光谱数据进行预处理;同时在网络中加入有效通道注意力模块和一维全局平均池化层,提高模型提取光谱特征的能力,减少噪声干扰。结果表明,改进后的EG-1D-CNN模型可判别蛋清粉样本的真伪,对于掺假蛋清粉的检测率可达到97.80%,总准确率(AAR)为98.93%,最低检测限(LLRC)在淀粉、大豆分离蛋白、三聚氰胺、尿素和甘氨酸5种单掺杂物质上分别可达到1%、5%、0.1%、1%、5%,在多掺杂中可达到0.1%~1%,平均检测时间(AATS)可达到0.004 4 s。与传统1D-CNN网络结构及其他改进算法相比,改进后的EG-1D-CNN模型在蛋清粉真实性检测上具有更高精度,检测速度快,且模型占用空间小,更适合部署在嵌入式设备中。该研究可为后续开发针对蛋粉质量检测的便携式近红外光谱检测仪提供一定的理论基础。 展开更多
关键词 蛋清粉 近红外光谱 真实性检测 一维卷积神经网络 深度学习
下载PDF
ISW32离心泵深度一维卷积神经网络故障诊断
2
作者 贺婷婷 张晓婷 +1 位作者 李强 颜洁 《机械设计与制造》 北大核心 2025年第4期213-216,共4页
传统卷积神经网络进行故障诊断过程费时费力,且人工提取特征未必完善。通过搭建离心泵故障诊断实验系统获得采样本,输入到深度一维卷积神经网络中进行故障诊断。通过提高1DCNN深度,为1DCNN模型设置了更多卷积层,最终实现D-1DCNN模型达... 传统卷积神经网络进行故障诊断过程费时费力,且人工提取特征未必完善。通过搭建离心泵故障诊断实验系统获得采样本,输入到深度一维卷积神经网络中进行故障诊断。通过提高1DCNN深度,为1DCNN模型设置了更多卷积层,最终实现D-1DCNN模型达到更强的特征提取能力。通过参数设置对深度一维卷积神经网络进行调节,确定最优的参数范围:学习率为0.01,卷积核选取为(1×3),批处理量为50,采取最大池化条件,以Adam优化器优化实验参数。实验测试研究结果表明:深度一维卷积神经网络在离心泵故障诊断实现了99.97%准确率,可以满足智能故障诊断的要求。该研究对提高ISW32离心泵的故障诊断能量具有很好的实际应用价值。 展开更多
关键词 离心泵 故障诊断 深度一维卷积神经网络 准确率 实验 采样
下载PDF
烧结矿低温还原粉化指数的一维卷积神经网络预测方法
3
作者 徐斌 洪德奔 春铁军 《制造业自动化》 2025年第1期112-120,共9页
以某钢铁企业烧结机的实际生产数据为基础,构建了基于一维卷积神经网络模型的烧结矿低温还原粉化指数(RDI)预测模型。首先对实际生产数据进行预处理,接着通过随机森林特征选择、k折交叉验证确定最优的特征参数组合。然后对一维卷积神经... 以某钢铁企业烧结机的实际生产数据为基础,构建了基于一维卷积神经网络模型的烧结矿低温还原粉化指数(RDI)预测模型。首先对实际生产数据进行预处理,接着通过随机森林特征选择、k折交叉验证确定最优的特征参数组合。然后对一维卷积神经网络的结构、各项参数进行训练调整,建立了最终的一维卷积神经网络预测模型。最后将预测结果与基于MLP神经网络、线性回归模型、随机森林模型的预测结果相比,一维卷积神经网络模型在预测的平均相对误差以及命中率上都有较好的表现。为了进一步提高模型的预测精度,采用了马尔可夫链来修正预测结果,最终模型的拟合优度R~2达到0.8478、在误差范围±2.5%内的命中率达到94.7%,基本达到了对烧结矿RDI进行实时预测的目的。 展开更多
关键词 烧结矿质量 低温还原粉化指数 一维卷积神经网络 马尔可夫链 预测
下载PDF
基于PCC-VMD的一维卷积神经网络的轴承早期故障诊断
4
作者 邓志超 张清华 于军 《机床与液压》 北大核心 2025年第2期9-15,共7页
针对轴承早期微弱故障信号容易被强噪声环境掩盖、特征难以提取的问题,提出一种基于皮尔逊相关系数和变分模态分解的一维卷积神经网络的早期故障诊断方法。采用VMD对原始振动信号进行变分模态分解;计算各模态分量与原始信号的皮尔逊相... 针对轴承早期微弱故障信号容易被强噪声环境掩盖、特征难以提取的问题,提出一种基于皮尔逊相关系数和变分模态分解的一维卷积神经网络的早期故障诊断方法。采用VMD对原始振动信号进行变分模态分解;计算各模态分量与原始信号的皮尔逊相关系数,再根据相关系数阈值去掉噪声分量并对信号进行重构,最后对重构信号进行傅里叶变换并输入到一维卷积神经网络中,利用一维卷积神经网络对轴承早期故障进行诊断。利用所提方法对西储大学(CWRU)轴承数据集的滚动轴承故障数据进行分析,诊断准确率达到99%以上,验证了所提方法对滚动轴承早期故障诊断的有效性。 展开更多
关键词 皮尔逊相关系数 变分模态分解 一维卷积神经网络(1D-CNN) 早期故障诊断
下载PDF
基于近红外光谱数据的一维卷积神经网络模型研究 被引量:3
5
作者 唐杰 罗彦波 +6 位作者 李翔宇 陈云璨 王鹏 卢天 纪晓波 庞永强 朱立军 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第3期731-736,共6页
近红外光谱技术已被广泛应用于各种检测行业,但传统方法难以汇集光谱关键信息,导致模型预测误差较大。为减少误差,基于452个茄科植物,以化学成分为目标,探索了一维卷积神经网络(1DCNN)在近红外数据上的回归模型研究。经参数优化,总结了... 近红外光谱技术已被广泛应用于各种检测行业,但传统方法难以汇集光谱关键信息,导致模型预测误差较大。为减少误差,基于452个茄科植物,以化学成分为目标,探索了一维卷积神经网络(1DCNN)在近红外数据上的回归模型研究。经参数优化,总结了一套兼顾精度与训练效率的1DCNN模型参数,为后续模型研究提供参考。模型测试集的均方根误差为0.02~0.49,平均相对误差为0.8%~1.7%,远小于历史文献。相比传统方法,1DCNN可充分利用全部近红外谱图数据,且建模简单,模型预测能力强。该工作能为近红外光谱相关研究提供新的数据处理思路,也能促进该技术的应用与发展。 展开更多
关键词 一维卷积神经网络 近红外光谱 深度学习
下载PDF
基于同步辐射X射线荧光光谱与一维卷积神经网络的癌症筛查方法 被引量:3
6
作者 魏超杰 李超 +5 位作者 解宏鑫 王欣 李玉锋 李玉文 刘杨 王伟 《中国无机分析化学》 CAS 北大核心 2024年第1期104-111,共8页
癌症是全球范围内引起高发病率与高死亡率的疾病之一。现有癌症检测方法耗时、昂贵、专业人员依赖性强,开发一种无损、快速筛查方法非常重要。在前期工作基础上,发展了基于同步辐射X射线荧光光谱技术(SRXRF)与深度学习技术结合的一种非... 癌症是全球范围内引起高发病率与高死亡率的疾病之一。现有癌症检测方法耗时、昂贵、专业人员依赖性强,开发一种无损、快速筛查方法非常重要。在前期工作基础上,发展了基于同步辐射X射线荧光光谱技术(SRXRF)与深度学习技术结合的一种非靶标金属组学方法筛查癌症患者。首先,分析控制组与癌症组共269份血清样本的SRXRF谱线,得到Ca、Mn、Zn、Ge、Br在两类人群中具有代表性差异,可以作为癌症筛查的标志物;其次,对于平均光谱进行归一化(Normalization)、迭代自适应加权惩罚最小二乘法(airPLS)、Savitzky-Golay平滑(SG)、标准正态变换(SNV)的预处理,并建立偏最小二乘判别分析(PLSDA)、K近邻法(KNN)、软独立建模分类法(SIMCA)的化学计量学模型,三种模型对癌症筛查的最优准确率分别为89.89%、93.26%、90.95%;最后,基于像素级光谱,搭建三种一维卷积神经网络(1DCNN)模型,三种模型准确率分别为93.56%、95.24%、93.27%,相对于化学计量学模型均有所提高,增加卷积层的数量有助于数据特征提取,模型准确率提高了1.68%。将三种模型卷积层提取获得的特征进行t-分布随机邻域嵌入算法(tSNE)降维可视化,得到1DCNN提取的特征具有显著可分性,SRXRF结合1DCNN模型开发的非靶标金属组学方法在实现癌症的快速筛查方面具有潜力。 展开更多
关键词 癌症筛查 血清 X射线荧光光谱 一维卷积神经网络 非靶标金属组学
下载PDF
基于多尺度一维卷积神经网络的弯管冲蚀损伤智能检测方法 被引量:1
7
作者 陈传智 李宁 +2 位作者 王畅 陈家梁 罗锦达 《科学技术与工程》 北大核心 2024年第5期1893-1899,共7页
针对高压管汇损伤需要提高检测效率和准确率的问题,提出一种基于多尺度一维卷积神经网络(multi-scale one-dimensional convolutional neural network,MS-1DCNN)的弯管冲蚀损伤智能检测新方法,即用多尺度卷积层代替传统的单一尺度卷积... 针对高压管汇损伤需要提高检测效率和准确率的问题,提出一种基于多尺度一维卷积神经网络(multi-scale one-dimensional convolutional neural network,MS-1DCNN)的弯管冲蚀损伤智能检测新方法,即用多尺度卷积层代替传统的单一尺度卷积层。在MS-1DCNN模型中,把通过模拟实验所得弯管冲蚀损伤原始时域信号作为多尺度一维卷积神经网络的输入,这样能解决传统方法依赖人工提取特征和专家知识的问题;然后,通过多尺度卷积层和池化层的交替连接对输入信号进行特征提取;最后,经由输出层输出弯管冲蚀损伤分类结果。模型试验结果表明:基于MS-1DCNN弯管冲蚀损伤检测方法可以有效检测出弯管冲蚀损伤,且平均检测准确率达到99.18%。研究可为高压管汇冲蚀损伤智能检测提供一种新思路。 展开更多
关键词 高压管汇 冲蚀损伤 一维卷积神经网络 多尺度 智能检测
下载PDF
一维卷积神经网络的自编码癫痫发作异常检测模型
8
作者 欧嘉志 詹长安 杨丰 《南方医科大学学报》 CAS CSCD 北大核心 2024年第9期1796-1804,共9页
目的将一维卷积神经网络(1DCNN)作为自编码模型的特征提取网络,利用1DCNN对头皮脑电信号(EEG)局部特征的感知能力来提高自编码模型(AE)在低维特征空间的表达能力,提出一种简单高效的癫痫异常检测模型。方法癫痫发作后会出现标志性的EEG... 目的将一维卷积神经网络(1DCNN)作为自编码模型的特征提取网络,利用1DCNN对头皮脑电信号(EEG)局部特征的感知能力来提高自编码模型(AE)在低维特征空间的表达能力,提出一种简单高效的癫痫异常检测模型。方法癫痫发作后会出现标志性的EEG波形变化,通过1DCNN的局部特征提取能力,捕捉正常信号的局部信息;利用正常数据训练自编码器,学习正常EEG数据在低维特征空间的表达,作为异常数据的癫痫EEG数据会脱离正常数据的低维特征空间,从而自编码模型无法有效地实现癫痫异常信号的重构;首先将输入和输出的差值作为异常分数值,然后通过ROC曲线的最优平衡点确定阈值,超过阈值的EEG信号被诊断为癫痫发作数据。利用公开数据集CHB-MIT脑电数据集和TUH脑电数据集,评估本文所提出的1DCNN-AE癫痫检测模型。结果从AUC值和癫痫事件检测两个任务来看,1DCNN-AE模型在患者平均水平下的AUC值分别达到了CHB-MIT的0.890和TUH的0.686,癫痫检测率达到了0.974和0.893,其结果优于最新癫痫异常检测模型LSTM-VAE和模型GRU-VAE。对于模型参数量而言,与LSTM-VAE的47.4M和GRU-VAE的36.9M等模型参数量相比,1DCNN模型的参数量Params达到了58.5M,处于同一个量级;但1DCNN-AE模型计算量FLOPs为0.377G,远远小于LSTM-VAE的21.6G和GRU-VAE的16.2G。结论1DCNN的自编码模型能有效地实现癫痫发作异常检测。 展开更多
关键词 自编码器 深度学习 癫痫检测 异常检测 一维卷积神经网络
下载PDF
基于改进激活函数的一维卷积神经网络电机轴承故障诊断的研究
9
作者 任大卫 周舒昊 +1 位作者 伦淑娴 李明 《渤海大学学报(自然科学版)》 CAS 2024年第1期74-80,共7页
提出了一种基于改进激活函数的一维卷积神经网络的电机轴承故障诊断的方法,该方法首先介绍了一维卷积神经网络的结构,然后详细说明了激活函数的改进点,最后通过仿真试验依次采用三种一维卷积神经网络对电机轴承故障进行分类,通过对比发... 提出了一种基于改进激活函数的一维卷积神经网络的电机轴承故障诊断的方法,该方法首先介绍了一维卷积神经网络的结构,然后详细说明了激活函数的改进点,最后通过仿真试验依次采用三种一维卷积神经网络对电机轴承故障进行分类,通过对比发现,此方法具有诊断准确率高、收敛速度快、无需人为提取故障特征等优点。 展开更多
关键词 激活函数 一维卷积神经网络 电机轴承故障诊断
下载PDF
一种基于一维卷积神经网络的试井模型智能识别方法
10
作者 齐占奎 张新鹏 +2 位作者 刘旭亮 查文舒 李道伦 《油气井测试》 2024年第2期72-78,共7页
为提高试井分析工作效率,实现试井模型的自动识别,提出了基于一维卷积神经网络(1D CNN)的试井模型智能识别方法。根据实测数据的特点,提出基于理论曲线构建样本库的原则与方法,并构建了4种常用油藏模型的训练样本库;建立了一维卷积神经... 为提高试井分析工作效率,实现试井模型的自动识别,提出了基于一维卷积神经网络(1D CNN)的试井模型智能识别方法。根据实测数据的特点,提出基于理论曲线构建样本库的原则与方法,并构建了4种常用油藏模型的训练样本库;建立了一维卷积神经网络模型,将样本库中双对数曲线的压力变化和压力导数数据作为输入,油藏类别作为网络输出训练及优化网络,总识别准确率可达99.16%,敏感度均在98%以上。经4口井实例应用,正确识别试井模型的概率大于0.99,与二维卷积神经网络相比,1D CNN显著降低了计算复杂度和时间成本,加快了训练速度。这表明基于试井理论所构建的样本库是有效的,能满足实测数据模型识别的需求;同时证明了方法的有效性、实用性和普适性。 展开更多
关键词 试井模型 一维卷积神经网络 智能识别 深度学习 自动解释 模型识别 样本库
下载PDF
基于一维卷积神经网络的粉煤灰混凝土氯离子质量分数预测 被引量:1
11
作者 章玉容 余威龙 +1 位作者 王龙龙 唐科 《浙江工业大学学报》 CAS 北大核心 2024年第2期156-163,共8页
为研究深度学习方法在氯离子质量分数预测中的应用,基于自然潮差环境下粉煤灰混凝土长期暴露试验获取了3150组自由氯离子质量分数数据,建立一维卷积神经网络(One-dimensional convolutional neural network,1D-CNN)模型用于预测粉煤灰... 为研究深度学习方法在氯离子质量分数预测中的应用,基于自然潮差环境下粉煤灰混凝土长期暴露试验获取了3150组自由氯离子质量分数数据,建立一维卷积神经网络(One-dimensional convolutional neural network,1D-CNN)模型用于预测粉煤灰混凝土氯离子质量分数。该模型分析了核函数和卷积层对1D-CNN预测精度的影响,研究了水灰比、暴露时间、粉煤灰掺量和渗透深度4个输入参数对粉煤灰混凝土自由氯离子质量分数预测结果的影响。实验结果表明:采用12个3×1卷积核及两层卷积层构建1D-CNN模型时,自由氯离子质量分数的预测结果最优;同时,应用最优的1D-CNN模型开展基于未测参数的自由氯离子质量分数预测,预测结果较为准确。因此,1D-CNN模型具有精度高和适用范围广泛的特点,能够为氯盐环境下混凝土中自由氯离子质量分数预测提供新的方法。 展开更多
关键词 自由氯离子质量分数 一维卷积神经网络 粉煤灰混凝土
下载PDF
低过采样数字调制信号的多尺度一维卷积神经网络解调器
12
作者 陈显敏 符杰林 《计算机应用与软件》 北大核心 2024年第5期113-117,共5页
针对应用深度学习方法对数字调制信号进行解调时过采样要求较高的问题,设计低过采样的多尺度一维卷积神经网络数字解调器。该解调器可以在与传统解调器相同的过采样条件下,对BPSK、4-QAM、8-QAM、16-QAM四种数字调制信号进行解调,并能... 针对应用深度学习方法对数字调制信号进行解调时过采样要求较高的问题,设计低过采样的多尺度一维卷积神经网络数字解调器。该解调器可以在与传统解调器相同的过采样条件下,对BPSK、4-QAM、8-QAM、16-QAM四种数字调制信号进行解调,并能保证传统解调方法相同的误码性能。仿真结果表明,在高斯和Rayleigh衰落信道下,给出的数字调制信号解调器可以在保证解调误码性能的同时,减少了对采样倍数的要求,降低了神经网络结构的复杂性。 展开更多
关键词 低采样倍数 解调 多尺度一维卷积神经网络 BPSK和M-QAM
下载PDF
基于一维卷积神经网络结合便携式拉曼光谱特级初榨橄榄油掺假定量分析
13
作者 张焕俊 戴臻 费洪晓 《光散射学报》 北大核心 2024年第4期436-444,共9页
针对造假手段的不断提升的现状及廉价的橄榄果渣油很可能成为特级初榨橄榄油掺假的潜在原材料等问题。因此,本研究重点围绕深度学习算法辅助非接触式无损伤光谱检测技术量化特级初榨橄榄油的掺假行为。将过期橄榄果渣油和特级初榨橄榄... 针对造假手段的不断提升的现状及廉价的橄榄果渣油很可能成为特级初榨橄榄油掺假的潜在原材料等问题。因此,本研究重点围绕深度学习算法辅助非接触式无损伤光谱检测技术量化特级初榨橄榄油的掺假行为。将过期橄榄果渣油和特级初榨橄榄油按不同体积比例混合,从而制备出不同浓度的掺假混合油品。使用785 nm便携式拉曼光谱仪对这些混合油品进行拉曼光谱采集,并结合一维卷积神经网络算法建立掺假量化模型。采用密度泛函理论基于B3LYP/6-31+G(d,p)基组计算亚油酸分子的理论振动光谱,以进一步解析特级初榨橄榄油的拉曼光谱。结果表明,基于具有深度结构的前馈神经网络与785 nm便携式拉曼光谱技术联用的技术方案是定量分析植物油掺假的有力工具,80个混合油品的4000条光谱数据量化模型的决定系数均优于0.97,其中评价模型测试集定量分析的决定系数达到了0.9704,均方根误差小于0.0499。该技术在快速评估特级初榨橄榄油掺假方面具有很好的应用潜力,为规范国内橄榄油市场和维护消费者合法权益提供了一种有益的参考方案。 展开更多
关键词 一维卷积神经网络 便携式拉曼光谱 密度泛函理论 特级初榨橄榄油 橄榄果榨油 掺假量化
下载PDF
基于一维卷积神经网络的CBA比赛结果预测
14
作者 文鹏 袁小艳 +2 位作者 韩梦姣 熊滔涛 向昕雨 《微型电脑应用》 2024年第12期161-164,共4页
篮球作为具有强对抗性的体育项目,其比赛结果对球队和观众都十分重要,同时也对体育博彩业有着较大影响,因此比赛结果的预测成了赛事外关注的重点之一。利用机器学习和深度学习对比赛结果进行预测,提出基于一维卷积神经网络(ID-CNN)的中... 篮球作为具有强对抗性的体育项目,其比赛结果对球队和观众都十分重要,同时也对体育博彩业有着较大影响,因此比赛结果的预测成了赛事外关注的重点之一。利用机器学习和深度学习对比赛结果进行预测,提出基于一维卷积神经网络(ID-CNN)的中国男子篮球职业联赛(CBA)比赛结果预测方法,将收集的CBA 2017—2022年5个赛季20支球队常规赛赛场数据进行皮尔逊相关系数计算和主成分分析(PCA)降维后,输入自建的ST-1D-CNN模型进行训练,实现对比赛结果的预测,模型达到了76.50%的准确率。 展开更多
关键词 篮球 一维卷积神经网络 皮尔逊相关系数 主成分分析 比赛结果预测
下载PDF
基于SVM-SMOTE算法的一维卷积神经网络电力系统暂态稳定评估模型
15
作者 袁梦薇 何宇 王旭 《智能计算机与应用》 2024年第7期50-56,共7页
为了提高电力系统运行稳定性,降低大停电事故发生的概率,本文提出了一种基于SVM-SMOTE算法的一维卷积神经网络暂态稳定评估模型。为了避免人工特征选择引入的主观偏差对模型预测性能的影响,本文选择来自PMU的底层量测数据作为输入特征,... 为了提高电力系统运行稳定性,降低大停电事故发生的概率,本文提出了一种基于SVM-SMOTE算法的一维卷积神经网络暂态稳定评估模型。为了避免人工特征选择引入的主观偏差对模型预测性能的影响,本文选择来自PMU的底层量测数据作为输入特征,并采用一维卷积神经网络(1D-CNN)捕捉输入特征的时序信息;考虑数据集样本不平衡带来的预测精度下降问题,采用SVM-SMOTE算法对样本进行均衡化。算例仿真结果表明,本文所提出的模型实现了端到端的时序特征提取和暂态稳定评估,可满足在线评估准确性、快速性和可靠性的要求,且有效解决了不平衡数据集中失稳样本漏判率高的问题。 展开更多
关键词 电力系统 暂态稳定评估 SVM-SMOTE算法 一维卷积神经网络
下载PDF
利用一维卷积神经网络模型和原位显微拉曼光谱定量分析牛油果油
16
作者 张雪松 孙铭思 刘换峥 《光散射学报》 北大核心 2024年第4期445-453,共9页
牛油果油是从牛油果果肉中提炼的一种新型植物油,由于其价格昂贵和大众认知度有限,市场上很可能会出现制假贩假的现象。为实现快速、无损和高通量的检测需求,本文提出一种利用一维卷积神经网络模型和原位显微拉曼光谱定量分析牛油果油... 牛油果油是从牛油果果肉中提炼的一种新型植物油,由于其价格昂贵和大众认知度有限,市场上很可能会出现制假贩假的现象。为实现快速、无损和高通量的检测需求,本文提出一种利用一维卷积神经网络模型和原位显微拉曼光谱定量分析牛油果油的检测方法。采用菜籽油和葵花油的混合物作为牛油果油掺假的主要成分,并使用原位显微拉曼光谱技术检测了纯植物油和混合油品的光谱,分析并解译了牛油果油的拉曼光谱特征谱峰的化学信息,通过协方差和相关系数遴选了与牛油果油浓度变化存在协同性和相关性的光谱信息,并将其作为网络模型的输入。构建的一维卷积神经网络模型在测试集中预测效果良好,总体的R^(2)>0.915,RMSR<0.0755。基于一维卷积神经网络模型结合原位显微拉曼光谱技术预测牛油果油掺伪浓度的检测方法可行性较好,满足市场应用的检测需求,该成果对于规范国内的牛油果油市场,加快市场监督的职能性管理具有重要的价值。 展开更多
关键词 原位显微拉曼光谱 一维卷积神经网络 牛油果油 定量分析
下载PDF
基于一维卷积神经网络的语音识别系统构建方法
17
作者 刘洋 廉咪咪 《电声技术》 2024年第10期77-79,共3页
提出一种基于一维卷积神经网络(1D Convolutional Neural Network,1D-CNN)的语音识别系统。首先研究基于1D-CNN的语音识别系统框架,其次重点介绍使用TensorFlow构建该系统的方法,最后采用Libri Speech数据集,在无噪声、轻微噪声和严重... 提出一种基于一维卷积神经网络(1D Convolutional Neural Network,1D-CNN)的语音识别系统。首先研究基于1D-CNN的语音识别系统框架,其次重点介绍使用TensorFlow构建该系统的方法,最后采用Libri Speech数据集,在无噪声、轻微噪声和严重噪声条件下进行系统测试,并使用准确率、召回率、F1等指标进行评估。实验结果表明,所提出的系统在无噪声和轻微噪声条件下具有较高的识别准确率和稳定性,即使在严重噪声环境中也表现出较好的健壮性。 展开更多
关键词 一维卷积神经网络(1D-CNN) 语音识别 系统构建 TensorFlow框架
下载PDF
基于一维卷积神经网络构建医用直线加速器高价值零件故障预测模型的应用效果
18
作者 傅世楣 《医疗装备》 2024年第14期25-27,共3页
目的构建医用直线加速器高价值零件故障预测模型,以实现对高价值零件故障的预判。方法选取2013年1月至2017年12月医院在用医科达Synergy医用直线加速器的60组共381个维修记录数据,按照7:3比例随机分配为训练集(42组)和测试集(18组),采... 目的构建医用直线加速器高价值零件故障预测模型,以实现对高价值零件故障的预判。方法选取2013年1月至2017年12月医院在用医科达Synergy医用直线加速器的60组共381个维修记录数据,按照7:3比例随机分配为训练集(42组)和测试集(18组),采用一维卷积神经网络进行二分类建模,随机选取30组数据作为验证集评估模型性能,并采用测试集数据检测模型预测效果。结果设定最大训练学习次数为120次,实际训练次数超过80次时数据趋于稳定,训练集和验证集的准确率均稳定于90%左右,测试集数据准确率均在96%以上,表明模型收敛较好。结论该模型预测医用直线加速器高价值零件的故障次数与实际情况接近,为预防性维修和保修服务采购提供了可靠的数据支持。 展开更多
关键词 一维卷积神经网络 医用直线加速器 高价值零件 故障预测模型
下载PDF
基于改进一维卷积神经网络的滚动轴承故障诊断方法
19
作者 任德珍 张清华 《河南科技》 2024年第10期20-26,共7页
【目的】为解决传统一维卷积神经网络模型在进行轴承故障诊断时出现过拟合和泛化能力弱的问题,提出了基于改进一维卷积神经网络(1DCNN)的滚动轴承故障诊断方法。【方法】首先,利用全局均值池化层代替传统一维卷积神经网络的全连接层,以... 【目的】为解决传统一维卷积神经网络模型在进行轴承故障诊断时出现过拟合和泛化能力弱的问题,提出了基于改进一维卷积神经网络(1DCNN)的滚动轴承故障诊断方法。【方法】首先,利用全局均值池化层代替传统一维卷积神经网络的全连接层,以减少模型中的参数数量、降低模型复杂度,从而提高卷积神经网络的泛化能力;其次,结合Dropout正则化方法,解决模型过拟合问题;最后,由Softmax分类函数进行分类。【结果】利用凯斯西储大学轴承故障数据集进行验证,结果表明,改进后的1DCNN在进行故障诊断时可以利用相对较少的训练次数就达到较高的准确率和较好的拟合效果,且故障准确率为99.42%。【结论】该方法明显优于传统一维卷积神经网络所呈现的故障诊断效果,对解决实际轴承故障问题具有重要的理论意义和应用价值。 展开更多
关键词 滚动轴承 一维卷积神经网络 故障诊断
下载PDF
基于信息融合与一维卷积神经网络的光伏电站传感器健康状态评估方法
20
作者 杨芳僚 黄鑫 +3 位作者 谭鸿志 闵琦 祝视 燕磊 《湖南电力》 2024年第3期105-113,共9页
针对现有传感器故障诊断方法中对专家知识的依赖、忽视旁路终端时空关联性、冗余特征影响等问题,提出一种基于信息融合与一维卷积神经网络的传感器健康状态评估方法。针对与光伏发电预测强相关的光照传感器和温度传感器,从传感器数据流... 针对现有传感器故障诊断方法中对专家知识的依赖、忽视旁路终端时空关联性、冗余特征影响等问题,提出一种基于信息融合与一维卷积神经网络的传感器健康状态评估方法。针对与光伏发电预测强相关的光照传感器和温度传感器,从传感器数据流统计特征、传感器数据流时序特征、旁路终端数据特征、天气预报数据特征等4个维度进行特征提取,并利用随机森林算法筛选传感器核心特征,最后针对以上两类传感器分别训练健康状态评估模型。实验结果表明,所提方法在温度传感器和光照传感器的健康状态评估中准确率分别达到了99.29%和99.07%。 展开更多
关键词 健康状态评估 传感器 信息融合 一维卷积神经网络 特征提取 特征筛选
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部