合成了3个三苯胺-吡啶衍生物4-乙烯基吡啶-4'-(N,N-二苯胺基)苯(PPAB)、三[4-(4-吡啶乙烯基)苯]胺(TPPA)和4-(对-甲基-乙烯基吡啶碘盐)-4'-(N,N-二苯胺基)苯(PBPI),研究了它们的单光子荧光和三光子荧光性质.在1310nm飞秒激光激...合成了3个三苯胺-吡啶衍生物4-乙烯基吡啶-4'-(N,N-二苯胺基)苯(PPAB)、三[4-(4-吡啶乙烯基)苯]胺(TPPA)和4-(对-甲基-乙烯基吡啶碘盐)-4'-(N,N-二苯胺基)苯(PBPI),研究了它们的单光子荧光和三光子荧光性质.在1310nm飞秒激光激发下,化合物PPAB,PBPI and TPPA在二氯甲烷溶液中发出很强的三光子上转换荧光,荧光峰分别位于648,625,696nm.用飞秒Ti:Sapphire激光器非线性透过率法测得3个化合物在1310nm三光子吸收截面分别为1.91×10-79,3.46×10-79,3.64×10-79cm6·s2,它们具有很强的三光子吸收和光限幅效应.展开更多
A highly sensitive and selective 3D excitation-emission fluorescence method has been proposed to rapidly quantify the combined antidiabetics Repaglinide(Re) and Irbesartan(Ir) in rat and human plasmas with the aid of ...A highly sensitive and selective 3D excitation-emission fluorescence method has been proposed to rapidly quantify the combined antidiabetics Repaglinide(Re) and Irbesartan(Ir) in rat and human plasmas with the aid of second-order calibration method based on alternating trilinear decomposition(ATLD) method. Re and Ir with weak fluorescence can be endowed with strong fluorescent property by changing the microenvironment in samples and improving the fluorescence quantum yield by using an appropriate micellar enhanced surfactant. The enhanced excitation-emission matrix fluorescence of Re and Ir can be accurately resolved and can simultaneously attain the optimal concentration even in the presence of a potentially strong intrinsic fluorescence from complex biological matrices, such as rat and human plasmas, by using the ATLD method, which completely exploits the "second-order advantage". The average recoveries of Re and Ir obtained from ATLD with the factor number of 3(N=3) were 101.0%±4.3% and 99.1%±4.1% for rat plasma and 100.5%±5.4% and 97.1%±3.6% for human plasma. Several statistical methods, including Student's t-test, figures of merit, and elliptical joint confidence region, have been utilized to evaluate the accuracy of the proposed method. Results show that the developed method can maintain second-order advantage in simultaneous determinations of the weak fluorescent analytes of interest in different biological plasma matrices.展开更多
文摘合成了3个三苯胺-吡啶衍生物4-乙烯基吡啶-4'-(N,N-二苯胺基)苯(PPAB)、三[4-(4-吡啶乙烯基)苯]胺(TPPA)和4-(对-甲基-乙烯基吡啶碘盐)-4'-(N,N-二苯胺基)苯(PBPI),研究了它们的单光子荧光和三光子荧光性质.在1310nm飞秒激光激发下,化合物PPAB,PBPI and TPPA在二氯甲烷溶液中发出很强的三光子上转换荧光,荧光峰分别位于648,625,696nm.用飞秒Ti:Sapphire激光器非线性透过率法测得3个化合物在1310nm三光子吸收截面分别为1.91×10-79,3.46×10-79,3.64×10-79cm6·s2,它们具有很强的三光子吸收和光限幅效应.
基金supported by the National Natural Science Foundation of China (21205145, 21575039)the Open Funds of State Key Laboratory of Chemo/Biosensing and Chemometrics of Hunan University (201111)The Open Research Program (2015ZD001, 2015ZD002) from the Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei province
文摘A highly sensitive and selective 3D excitation-emission fluorescence method has been proposed to rapidly quantify the combined antidiabetics Repaglinide(Re) and Irbesartan(Ir) in rat and human plasmas with the aid of second-order calibration method based on alternating trilinear decomposition(ATLD) method. Re and Ir with weak fluorescence can be endowed with strong fluorescent property by changing the microenvironment in samples and improving the fluorescence quantum yield by using an appropriate micellar enhanced surfactant. The enhanced excitation-emission matrix fluorescence of Re and Ir can be accurately resolved and can simultaneously attain the optimal concentration even in the presence of a potentially strong intrinsic fluorescence from complex biological matrices, such as rat and human plasmas, by using the ATLD method, which completely exploits the "second-order advantage". The average recoveries of Re and Ir obtained from ATLD with the factor number of 3(N=3) were 101.0%±4.3% and 99.1%±4.1% for rat plasma and 100.5%±5.4% and 97.1%±3.6% for human plasma. Several statistical methods, including Student's t-test, figures of merit, and elliptical joint confidence region, have been utilized to evaluate the accuracy of the proposed method. Results show that the developed method can maintain second-order advantage in simultaneous determinations of the weak fluorescent analytes of interest in different biological plasma matrices.