样条函数是函数逼近理论一个非常活跃的分支,促使了研究人员需要深刻认识样条函数的本质及性质。本文介绍了基于Hermite两点三次公式的三转角插值算法。三转角以插值节点的一阶导数为未知量构建样条函数,在此基础上,研究插值节点均匀分...样条函数是函数逼近理论一个非常活跃的分支,促使了研究人员需要深刻认识样条函数的本质及性质。本文介绍了基于Hermite两点三次公式的三转角插值算法。三转角以插值节点的一阶导数为未知量构建样条函数,在此基础上,研究插值节点均匀分布时,在第二类边界条件下,即II型插值条件下,当边界初值发生扰动时,对应的三次样条函数在插值节点的一阶导数值如何随第二边界初值的扰动而变化,基于Doolittle分解和Crout分解性质,推导出2个定理,即误差估计的表达式,这些定理为三次样条函数在二阶导数边界初值变化时的误差分析提供了可行的方法。Spline function is a very active branch of function approximation theory, which makes researchers need to deeply understand the essence and properties of spline function. This paper introduces the three-angle interpolation algorithm based on Hermite two-point cubic formula. The three-angle spline function is constructed with the first derivative of the interpolating node as an unknown quantity. On this basis, when interpolating nodes are evenly distributed, under the second type of boundary condition, that is, under the type II interpolation condition, when the initial value of the boundary is disturbed, the corresponding cubic spline function in the interpolating node’s first derivative value changes with the disturbance of the initial value of the second boundary. Based on the properties of Doolittle decomposition and Crout decomposition, two theorems, namely the expression of error estimation, are derived. These theorems provide a feasible method for error analysis of cubic spline function when the initial value of the second derivative boundary changes.展开更多
针对锂电池低荷电状态时输出变化大和模型参数辨识困难问题,提出一种基于三次样条插值法的建模与参数辨识方法。首先建立了含SOC动态的三阶3RC-3D等效电路模型,分析了低SOC时应用最小二乘法对不同模型参数进行辨识产生的误差。在此基础...针对锂电池低荷电状态时输出变化大和模型参数辨识困难问题,提出一种基于三次样条插值法的建模与参数辨识方法。首先建立了含SOC动态的三阶3RC-3D等效电路模型,分析了低SOC时应用最小二乘法对不同模型参数进行辨识产生的误差。在此基础上,结合三次样条插值法的拟合特性和合适的边界条件,构造了三次样条插值函数,在SOC≤10%区间进行了模型各参数辨识,并拟合出了模型参数变化曲线。最后,将辨识后的模型参数曲线与混合脉冲功率特性HPPC(Hybrid Pulse Power Characterization)试验的实际测量值进行了对比。从比较结果看,本文所提的辨识方法减小了参数辨识误差,提高了模型精度,验证了在SOC≤10%区间应用三次样条插值法进行锂电池模型参数辨识的有效性。仿真结果表明,基于三次样条插值辨识方法建立的三阶3RC-3D等效电路模型能够高精度地跟踪锂电池输出外特性。展开更多
文摘样条函数是函数逼近理论一个非常活跃的分支,促使了研究人员需要深刻认识样条函数的本质及性质。本文介绍了基于Hermite两点三次公式的三转角插值算法。三转角以插值节点的一阶导数为未知量构建样条函数,在此基础上,研究插值节点均匀分布时,在第二类边界条件下,即II型插值条件下,当边界初值发生扰动时,对应的三次样条函数在插值节点的一阶导数值如何随第二边界初值的扰动而变化,基于Doolittle分解和Crout分解性质,推导出2个定理,即误差估计的表达式,这些定理为三次样条函数在二阶导数边界初值变化时的误差分析提供了可行的方法。Spline function is a very active branch of function approximation theory, which makes researchers need to deeply understand the essence and properties of spline function. This paper introduces the three-angle interpolation algorithm based on Hermite two-point cubic formula. The three-angle spline function is constructed with the first derivative of the interpolating node as an unknown quantity. On this basis, when interpolating nodes are evenly distributed, under the second type of boundary condition, that is, under the type II interpolation condition, when the initial value of the boundary is disturbed, the corresponding cubic spline function in the interpolating node’s first derivative value changes with the disturbance of the initial value of the second boundary. Based on the properties of Doolittle decomposition and Crout decomposition, two theorems, namely the expression of error estimation, are derived. These theorems provide a feasible method for error analysis of cubic spline function when the initial value of the second derivative boundary changes.
文摘针对锂电池低荷电状态时输出变化大和模型参数辨识困难问题,提出一种基于三次样条插值法的建模与参数辨识方法。首先建立了含SOC动态的三阶3RC-3D等效电路模型,分析了低SOC时应用最小二乘法对不同模型参数进行辨识产生的误差。在此基础上,结合三次样条插值法的拟合特性和合适的边界条件,构造了三次样条插值函数,在SOC≤10%区间进行了模型各参数辨识,并拟合出了模型参数变化曲线。最后,将辨识后的模型参数曲线与混合脉冲功率特性HPPC(Hybrid Pulse Power Characterization)试验的实际测量值进行了对比。从比较结果看,本文所提的辨识方法减小了参数辨识误差,提高了模型精度,验证了在SOC≤10%区间应用三次样条插值法进行锂电池模型参数辨识的有效性。仿真结果表明,基于三次样条插值辨识方法建立的三阶3RC-3D等效电路模型能够高精度地跟踪锂电池输出外特性。