位于谐振区的雷达目标可由极点特征进行识别,但极点特征的物理意义及其对应的谐振机理并不明确。针对该问题,本文利用一致性几何绕射理论(uniform geometrical theory of diffraction,UTD),研究了曲面绕射的谐振机理,并提出了一种用于...位于谐振区的雷达目标可由极点特征进行识别,但极点特征的物理意义及其对应的谐振机理并不明确。针对该问题,本文利用一致性几何绕射理论(uniform geometrical theory of diffraction,UTD),研究了曲面绕射的谐振机理,并提出了一种用于谐振区含曲面目标识别的极点正向推算方法。首先,用投影递推寻迹算法在目标表面获取爬行波的闭合路径及几何参数;然后,基于UTD给出曲面绕射场表达式,推导出用于预测极点的谐振方程;最后,通过对理想导体球及椭球进行极点预测,与频域仿真提取的极点进行对比,综合误差在5%以内,验证了建模方法的准确性。展开更多
由于山区地形复杂,准确计算绕击跳闸率较为困难。现有的传统二维电气几何模型法,在对绕击率进行计算时,取导地线平均高度,这只能反映线路整体水平,并不能表示线路某一段的实际情况,特别是对于大档距的输电线路来说,若采用平均高度进行计...由于山区地形复杂,准确计算绕击跳闸率较为困难。现有的传统二维电气几何模型法,在对绕击率进行计算时,取导地线平均高度,这只能反映线路整体水平,并不能表示线路某一段的实际情况,特别是对于大档距的输电线路来说,若采用平均高度进行计算,可能会得到该档距内绕击率较小的结论,但实际上在该档距内某一段线路绕击率是很大的。因此,结论存在较大误差,对二维电气几何模型的改进是十分必要的。在二维电气几何模型的基础上,进行三维拓展,将线路上每一点的对地高度都进行了分析计算,给出了在三维电气几何模型下的绕击跳闸率计算公式;并以通化地区220 k V线路为例,比较两种方法计算结果,结果表明三维电气几何模型与实际更相符。展开更多
传统的基于弹跳射线(shooting and bouncing ray,SBR)技术的散射中心提取方法只考虑了理想点模型,但理想点模型无法描述散射中心的频率依赖特性。对此,提出一种基于弹跳射线技术的三维几何绕射理论(geometrical theory of diffraction,G...传统的基于弹跳射线(shooting and bouncing ray,SBR)技术的散射中心提取方法只考虑了理想点模型,但理想点模型无法描述散射中心的频率依赖特性。对此,提出一种基于弹跳射线技术的三维几何绕射理论(geometrical theory of diffraction,GTD)模型构建方法,在通过传统方法获取的理想点模型的基础上,利用射线管数据正向推算散射中心的频率依赖参数并修正其径向位置,实现了高精度三维GTD模型构建。仿真结果表明,点频、单视角下构建的三维GTD模型不仅能准确重构相同条件下的雷达散射截面(radar cross section,RCS),还能实现宽带RCS外推,能够满足目标宽带散射数据高效压缩和快速重构的应用需求。展开更多
文摘位于谐振区的雷达目标可由极点特征进行识别,但极点特征的物理意义及其对应的谐振机理并不明确。针对该问题,本文利用一致性几何绕射理论(uniform geometrical theory of diffraction,UTD),研究了曲面绕射的谐振机理,并提出了一种用于谐振区含曲面目标识别的极点正向推算方法。首先,用投影递推寻迹算法在目标表面获取爬行波的闭合路径及几何参数;然后,基于UTD给出曲面绕射场表达式,推导出用于预测极点的谐振方程;最后,通过对理想导体球及椭球进行极点预测,与频域仿真提取的极点进行对比,综合误差在5%以内,验证了建模方法的准确性。
文摘由于山区地形复杂,准确计算绕击跳闸率较为困难。现有的传统二维电气几何模型法,在对绕击率进行计算时,取导地线平均高度,这只能反映线路整体水平,并不能表示线路某一段的实际情况,特别是对于大档距的输电线路来说,若采用平均高度进行计算,可能会得到该档距内绕击率较小的结论,但实际上在该档距内某一段线路绕击率是很大的。因此,结论存在较大误差,对二维电气几何模型的改进是十分必要的。在二维电气几何模型的基础上,进行三维拓展,将线路上每一点的对地高度都进行了分析计算,给出了在三维电气几何模型下的绕击跳闸率计算公式;并以通化地区220 k V线路为例,比较两种方法计算结果,结果表明三维电气几何模型与实际更相符。
文摘传统的基于弹跳射线(shooting and bouncing ray,SBR)技术的散射中心提取方法只考虑了理想点模型,但理想点模型无法描述散射中心的频率依赖特性。对此,提出一种基于弹跳射线技术的三维几何绕射理论(geometrical theory of diffraction,GTD)模型构建方法,在通过传统方法获取的理想点模型的基础上,利用射线管数据正向推算散射中心的频率依赖参数并修正其径向位置,实现了高精度三维GTD模型构建。仿真结果表明,点频、单视角下构建的三维GTD模型不仅能准确重构相同条件下的雷达散射截面(radar cross section,RCS),还能实现宽带RCS外推,能够满足目标宽带散射数据高效压缩和快速重构的应用需求。