A 3D bounding surface model is established for rockfill materials,which can be applied to appropriately predict the deformation and the stabilization of rockfill dams.Firstly,an associated plastic flow rule for rockfi...A 3D bounding surface model is established for rockfill materials,which can be applied to appropriately predict the deformation and the stabilization of rockfill dams.Firstly,an associated plastic flow rule for rockfill materials is investigated based on the elaborate data from the large-style triaxial compression tests and the true triaxial tests.Secondly,the constitutive equations of the 3D bounding surface model are established by several steps.These steps include the bounding surface incorporating the general nonlinear strength criterion,stress-dilatancy equations,the evolution of the bounding surface and the bounding surface plasticity.Finally,the 3D bounding surface model is used to predict the mechanical behaviors of rockfill materials from the large-style triaxial compression tests and the true triaxial tests.Consequently,the proposed 3D bounding surface model can well capture such behaviors of rockfill materials as the strain hardening,the post-peak strain softening,and the volumetric strain contraction and expansion in both two-and three-dimensional stress spaces.展开更多
A bounding surface model incorporating a unified nonlinear strength criterion is proposed.The proposed bounding surface model contains 9 model parameters,which can be determined from the conventional triaxial tests.Th...A bounding surface model incorporating a unified nonlinear strength criterion is proposed.The proposed bounding surface model contains 9 model parameters,which can be determined from the conventional triaxial tests.The bounding surface model can reproduce such behaviours as the strain hardening,the post-peak strain softening,and the volumetric strain contraction and expansion.Based on the comparisons between the predictions and the test results,the proposed strength criterion and model can well reproduce the experimental results of the strength and stress-strain behaviours of rockfill material in three-dimensional stress space.The strength behaviour of rockfill material is summarized as:(a) the failure stress ratio decreases with the initial confining pressure on the meridian plane;(b) the failure deviatoric stress decreases with the Lode angle from 0o to 60o on the deviatoric plane.The stress ratio decreases with increasing one of such factors as the initial void ratio,the intermediate principal stress ratio and the minor principal stress at the same strain when the other factors are given.展开更多
Abstract The authors consider one specific kind of heat transfer problems in a threedimensional layered domain, with nonlinear Stefan-Boltzmann conditions on the boundaries as well as on the interfaces. To determine t...Abstract The authors consider one specific kind of heat transfer problems in a threedimensional layered domain, with nonlinear Stefan-Boltzmann conditions on the boundaries as well as on the interfaces. To determine the unknown part of the boundary (or corrosion) by the Cauchy data on the reachable part is an important inverse problem in engineering. The mathematical model of this problem is introduced, the well-posedness of the forward problems and the uniqueness of the inverse problems are obtained.展开更多
This Article presents a three dimensional numerical model investigating thermal performance and hydrodynamics features of the confined slot jet impingement using slurry of Nano Encapsulated Phase Change Material(NEPCM...This Article presents a three dimensional numerical model investigating thermal performance and hydrodynamics features of the confined slot jet impingement using slurry of Nano Encapsulated Phase Change Material(NEPCM)as a coolant.The slurry is composed of water as a base fluid and n-octadecane NEPCM particles with mean diameter of 100 nm suspended in it.A single phase fluid approach is employed to model the NEPCM slurry.The thermo physical properties of the NEPCM slurry are computed using modern approaches being proposed recently and governing equations are solved with a commercial Finite Volume based code.The effects of jet Reynolds number varying from 100 to 600 and particle volume fraction ranging from 0% to 28% are considered.The computed results are validated by comparing Nusselt number values at stagnation point with the previously published results with water as working fluid.It was found that adding NEPCM to the base fluid results with considerable amount of heat transfer enhancement.The highest values of heat transfer coefficients are observed at H/W=4 and C_m=0.28.However,due to the higher viscosity of slurry compared with the base fluid,the slurry can produce drastic increase in pressure drop of the system that increases with NEPCM particle loading and jet Reynolds number.展开更多
The shift in the percolation threshold of compressed composites was studied by a 3D continuum percolation model. A Monte Carlo (MC) method was employed in the simulations. The percolation threshold was found to rise w...The shift in the percolation threshold of compressed composites was studied by a 3D continuum percolation model. A Monte Carlo (MC) method was employed in the simulations. The percolation threshold was found to rise with the compression strain, which captures the basic trend in compression-induced conductivity variation from the experiments. Both fiber bending and texture formation contribute to the percolation threshold. The results suggest that fillers with a high aspect ratio are more desirable for sensor and electrical switch applications.展开更多
基金supported by the National Natural Science Foundation for Distinguished Young Scholar (Grant No. 50825901)the Key Project of National Natural Science Foundation of China and Yalongjiang Hydro-electric Development Joint Research Fund (Grant No. 50639050)+2 种基金the Public Service Sector R&D Project of Ministry of Water Resource of China(Grant No. 200801014)the Fundamental Research Funds for the Central Universities (Grant No. 2010B15014)Scientific Innovation Research Scheme for Jiangsu University Graduate (Grant No. CX10B_207Z)
文摘A 3D bounding surface model is established for rockfill materials,which can be applied to appropriately predict the deformation and the stabilization of rockfill dams.Firstly,an associated plastic flow rule for rockfill materials is investigated based on the elaborate data from the large-style triaxial compression tests and the true triaxial tests.Secondly,the constitutive equations of the 3D bounding surface model are established by several steps.These steps include the bounding surface incorporating the general nonlinear strength criterion,stress-dilatancy equations,the evolution of the bounding surface and the bounding surface plasticity.Finally,the 3D bounding surface model is used to predict the mechanical behaviors of rockfill materials from the large-style triaxial compression tests and the true triaxial tests.Consequently,the proposed 3D bounding surface model can well capture such behaviors of rockfill materials as the strain hardening,the post-peak strain softening,and the volumetric strain contraction and expansion in both two-and three-dimensional stress spaces.
基金supported by the National Natural Science Foundation of China for Distinguished Young Scholar (Grant No. 50825901)the Public Service Sector R&D Project of Ministry of Water Resource of China(Grant No. 200801014)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No. 2011B14514)Jiangsu Civil Engineering Graduate Center for Innovation and Academic Communication Foundation
文摘A bounding surface model incorporating a unified nonlinear strength criterion is proposed.The proposed bounding surface model contains 9 model parameters,which can be determined from the conventional triaxial tests.The bounding surface model can reproduce such behaviours as the strain hardening,the post-peak strain softening,and the volumetric strain contraction and expansion.Based on the comparisons between the predictions and the test results,the proposed strength criterion and model can well reproduce the experimental results of the strength and stress-strain behaviours of rockfill material in three-dimensional stress space.The strength behaviour of rockfill material is summarized as:(a) the failure stress ratio decreases with the initial confining pressure on the meridian plane;(b) the failure deviatoric stress decreases with the Lode angle from 0o to 60o on the deviatoric plane.The stress ratio decreases with increasing one of such factors as the initial void ratio,the intermediate principal stress ratio and the minor principal stress at the same strain when the other factors are given.
基金supported by the Shanghai Natural Science Foundation of China (No.07JC14001)the Doctoral Program Foundation of the Ministry of Education of China+2 种基金the Tianyuan Fund for Mathematics (No.10826105)the National Basic Research Program (No.2005CB321701)the 111 Project (No.B08018)
文摘Abstract The authors consider one specific kind of heat transfer problems in a threedimensional layered domain, with nonlinear Stefan-Boltzmann conditions on the boundaries as well as on the interfaces. To determine the unknown part of the boundary (or corrosion) by the Cauchy data on the reachable part is an important inverse problem in engineering. The mathematical model of this problem is introduced, the well-posedness of the forward problems and the uniqueness of the inverse problems are obtained.
基金supported by the National Natural Science Foundation of China(No.51322604)
文摘This Article presents a three dimensional numerical model investigating thermal performance and hydrodynamics features of the confined slot jet impingement using slurry of Nano Encapsulated Phase Change Material(NEPCM)as a coolant.The slurry is composed of water as a base fluid and n-octadecane NEPCM particles with mean diameter of 100 nm suspended in it.A single phase fluid approach is employed to model the NEPCM slurry.The thermo physical properties of the NEPCM slurry are computed using modern approaches being proposed recently and governing equations are solved with a commercial Finite Volume based code.The effects of jet Reynolds number varying from 100 to 600 and particle volume fraction ranging from 0% to 28% are considered.The computed results are validated by comparing Nusselt number values at stagnation point with the previously published results with water as working fluid.It was found that adding NEPCM to the base fluid results with considerable amount of heat transfer enhancement.The highest values of heat transfer coefficients are observed at H/W=4 and C_m=0.28.However,due to the higher viscosity of slurry compared with the base fluid,the slurry can produce drastic increase in pressure drop of the system that increases with NEPCM particle loading and jet Reynolds number.
基金Project supported by the National Natural Science Foundation of China (No 10832009)the National Basic Research Program (973) of China (No 2004CB619304)the Science Foundation of Chinese University (No 2009QNA4034)
文摘The shift in the percolation threshold of compressed composites was studied by a 3D continuum percolation model. A Monte Carlo (MC) method was employed in the simulations. The percolation threshold was found to rise with the compression strain, which captures the basic trend in compression-induced conductivity variation from the experiments. Both fiber bending and texture formation contribute to the percolation threshold. The results suggest that fillers with a high aspect ratio are more desirable for sensor and electrical switch applications.