提出一种基于粗糙集的社区结构发现算法。将信息中心度作为衡量节点之间关联度的标准,在处理社区间边界节点时引入粗糙集中的上下近似集概念。将网络中的各个节点划分到社区中,从而将复杂网络划分成k个社区,k值由算法自动选定,并通过模...提出一种基于粗糙集的社区结构发现算法。将信息中心度作为衡量节点之间关联度的标准,在处理社区间边界节点时引入粗糙集中的上下近似集概念。将网络中的各个节点划分到社区中,从而将复杂网络划分成k个社区,k值由算法自动选定,并通过模块度确定理想的社区结构。在Zachary Karate Club模型和College Football Network模型上进行验证,实验结果表明,该算法的准确率较高。展开更多
文摘提出一种基于粗糙集的社区结构发现算法。将信息中心度作为衡量节点之间关联度的标准,在处理社区间边界节点时引入粗糙集中的上下近似集概念。将网络中的各个节点划分到社区中,从而将复杂网络划分成k个社区,k值由算法自动选定,并通过模块度确定理想的社区结构。在Zachary Karate Club模型和College Football Network模型上进行验证,实验结果表明,该算法的准确率较高。