In this paper, we prove local and global existence of classical solutions for a system of equations concerning an incompressible viscoelastic fluid of Oldroyd-B type via the incompressible limit when the initial data ...In this paper, we prove local and global existence of classical solutions for a system of equations concerning an incompressible viscoelastic fluid of Oldroyd-B type via the incompressible limit when the initial data are sufficiently small.展开更多
This paper studies the incompressible limit and stability of global strong solutions to the threedimensional full compressible Navier-Stokes equations, where the initial data satisfy the "well-prepared" cond...This paper studies the incompressible limit and stability of global strong solutions to the threedimensional full compressible Navier-Stokes equations, where the initial data satisfy the "well-prepared" conditions and the velocity field and temperature enjoy the slip boundary condition and convective boundary condition, respectively. The uniform estimates with respect to both the Mach number ∈(0, ∈] and time t ∈ [0, ∞) are established by deriving a differential inequality with decay property, where ∈∈(0, 1] is a constant.As the Mach number vanishes, the global solution to full compressible Navier-Stokes equations converges to the one of isentropic incompressible Navier-Stokes equations in t ∈ [0, +∞). Moreover, we prove the exponentially asymptotic stability for the global solutions of both the compressible system and its limiting incompressible system.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 10225102)the 973 Project of the Ministry of Science and Technology of China and the Doctoral Program Foundation of the Ministry of Education of China.
文摘In this paper, we prove local and global existence of classical solutions for a system of equations concerning an incompressible viscoelastic fluid of Oldroyd-B type via the incompressible limit when the initial data are sufficiently small.
基金supported by National Natural Science Foundation of China (Grant No. 11471334)Program for New Century Excellent Talents in University (Grant No. NCET-12-0085)
文摘This paper studies the incompressible limit and stability of global strong solutions to the threedimensional full compressible Navier-Stokes equations, where the initial data satisfy the "well-prepared" conditions and the velocity field and temperature enjoy the slip boundary condition and convective boundary condition, respectively. The uniform estimates with respect to both the Mach number ∈(0, ∈] and time t ∈ [0, ∞) are established by deriving a differential inequality with decay property, where ∈∈(0, 1] is a constant.As the Mach number vanishes, the global solution to full compressible Navier-Stokes equations converges to the one of isentropic incompressible Navier-Stokes equations in t ∈ [0, +∞). Moreover, we prove the exponentially asymptotic stability for the global solutions of both the compressible system and its limiting incompressible system.