在这项工作中,我们采用简单的水热方法在泡沫镍基底上生长了钴酸镍纳米片。结果表明,合成的NiCo2O4纳米片直接用作超级电容器电极,呈现出优异的电化学性能。在电流密度为1 m A·cm^-2时,其面积比电容达到1.26 C·cm^-2;经过1000...在这项工作中,我们采用简单的水热方法在泡沫镍基底上生长了钴酸镍纳米片。结果表明,合成的NiCo2O4纳米片直接用作超级电容器电极,呈现出优异的电化学性能。在电流密度为1 m A·cm^-2时,其面积比电容达到1.26 C·cm^-2;经过10000次充放电循环后,其比电容仍能保持初始容量的97.6%。以NiCo2O4纳米片为正极,活性炭为负极组装的超级电容器在功率密度为1.56和4.5 W·cm^-3时,其能量密度分别达到0.14和0.09 Wh·cm^-3。经过10000次循环后,器件仍能保持初始比电容的95%。以上结果证明合成的钴酸镍纳米片电极在未来的储能器件中具有良好的电化学应用前景。展开更多
The composite electrodes consisting of carbon nanotubes and spherical Ni(OH)2 are developed by mixing nickel hydroxide, carbon nanotubes and carbonyl nickel powder together in 8:1:1 ratio. A maximum capacitance of 311...The composite electrodes consisting of carbon nanotubes and spherical Ni(OH)2 are developed by mixing nickel hydroxide, carbon nanotubes and carbonyl nickel powder together in 8:1:1 ratio. A maximum capacitance of 311 F/g is obtained for an electrode prepared with the precipitation process. In order to enhance energy density, an asymmetric type pseudo-capacitor/electric double layer capacitor is considered and its electrochemical properties are investigated. Values for the specific energy and maximum specific power of 25.8 W·h/kg and 2.8 kW/kg, respectively, are demonstrated for a cell voltage between 0 and 1.6 V. By using the modified cathode of a Ni(OH)2/carbon nanotube composite electrode, the asymmetric supercapacitor exhibits high energy density and stable power characteristics.展开更多
基金supported by the National Nature Science Foundations of China (Grant No. 21673263, and 51572247)the Shandong Province Natural Science Foundation (Grant No. ZR2014EMM003)the Independent Innovation Plan Foundations of Qingdao City of China (Grant No. 16-5-1-42-jch)
基金financially supported by the National Natural Science Foundation of China(21663029,21461024,21301147,21661029)the Guangdong Introducing Innovative and Enterpreneurial Team(2016ZT06C412)the Guangdong University of Technology Hundred Talents Program(220418136)
基金supported by Natural Science Foundations of China(21306030)the Natural Science Foundations of Guangdong Province(s2013040015229,2014A030313520)+1 种基金Scientific Research Project of Guangzhou Municipal Colleges and Universities(2012A064,12014106184)the Fresh Talent Program of Guangzhou University(201302)
文摘The composite electrodes consisting of carbon nanotubes and spherical Ni(OH)2 are developed by mixing nickel hydroxide, carbon nanotubes and carbonyl nickel powder together in 8:1:1 ratio. A maximum capacitance of 311 F/g is obtained for an electrode prepared with the precipitation process. In order to enhance energy density, an asymmetric type pseudo-capacitor/electric double layer capacitor is considered and its electrochemical properties are investigated. Values for the specific energy and maximum specific power of 25.8 W·h/kg and 2.8 kW/kg, respectively, are demonstrated for a cell voltage between 0 and 1.6 V. By using the modified cathode of a Ni(OH)2/carbon nanotube composite electrode, the asymmetric supercapacitor exhibits high energy density and stable power characteristics.