不平衡数据对传统分类算法的性能有一定影响,使得少数类的识别率降低。过采样是处理不平衡数据集的常用方法之一,其主要思想是通过增加少数类样本,使得少数类与多数类的数量能够在一定程度上达到平衡,但现有的过采样方法存在合成重叠样...不平衡数据对传统分类算法的性能有一定影响,使得少数类的识别率降低。过采样是处理不平衡数据集的常用方法之一,其主要思想是通过增加少数类样本,使得少数类与多数类的数量能够在一定程度上达到平衡,但现有的过采样方法存在合成重叠样本以及过拟合的问题。文中提出一种基于层次聚类的不平衡数据加权过采样方法WOHC(Weighted Oversampling method based on Hierarchical Clustering)。该方法首先使用层次聚类算法对少数类进行聚类,将少数类样本划分为多个类簇,然后计算出类簇的密度因子来确定各类簇的采样倍率,最后根据每个类簇中样本与多数类边界的距离确定采样权重。利用该方法采样并结合C4.5算法在多个数据集上进行分类实验,结果表明使用该方法能够使分类算法在F-measure和G-mean指标上分别提升7.6%和5.8%,体现了该方法的有效性。展开更多
针对不平衡数据集分类结果偏向多数类的问题,重采样技术是解决此问题的有效方法之一。而传统过采样算法易合成无效样本,欠采样方法易剔除重要样本信息。基于此提出一种基于SVM的不平衡数据过采样方法SVMOM(Oversampling Method Based on...针对不平衡数据集分类结果偏向多数类的问题,重采样技术是解决此问题的有效方法之一。而传统过采样算法易合成无效样本,欠采样方法易剔除重要样本信息。基于此提出一种基于SVM的不平衡数据过采样方法SVMOM(Oversampling Method Based on SVM)。SVMOM通过迭代合成样本。在迭代过程中,通过SVM得到分类超平面;根据每个少数类样本到分类超平面的距离赋予样本距离权重;同时考虑少数类样本的类内平衡,根据样本的分布计算样本的密度,赋予样本密度权重;依据样本的距离权重和密度权重计算每个少数类样本的选择权重,根据样本的选择权重选择样本运用SMOTE合成新样本,达到平衡数据集的目的。实验结果表明,提出的算法在一定程度上解决了分类结果偏向多数类的问题,验证了算法的有效性。展开更多
针对不平衡数据中类重叠区域易造成分类错误的问题,提出一种引入合成因子改进边界分类的Borderline-SMOTE过采样方法(IBSM).首先根据少数类样本近邻分布情况找出处于边界的少数类样本,然后计算边界样本对应的合成因子,并根据其取值更新...针对不平衡数据中类重叠区域易造成分类错误的问题,提出一种引入合成因子改进边界分类的Borderline-SMOTE过采样方法(IBSM).首先根据少数类样本近邻分布情况找出处于边界的少数类样本,然后计算边界样本对应的合成因子,并根据其取值更新该样本需生成的样本数,最后在近邻中根据合成因子挑选距离最近的top-Z少数类样本进行新样本生成.将提出的方法与八种采样方法在KNN和SVM两种分类器、10个KEEL不平衡数据集上进行对比实验,结果表明,提出的方法在大部分数据集上的F1,G-mean,AUC(Area under Curve)均获得最优值,且F1与AUC的Friedman排名最优,证明所提方法和其余采样方法相比,在处理不平衡数据中的边界样本分类问题时有更好的表现,通过合成因子设定一定的约束条件与分配策略,可以为同类研究提供思路.展开更多
文摘不平衡数据对传统分类算法的性能有一定影响,使得少数类的识别率降低。过采样是处理不平衡数据集的常用方法之一,其主要思想是通过增加少数类样本,使得少数类与多数类的数量能够在一定程度上达到平衡,但现有的过采样方法存在合成重叠样本以及过拟合的问题。文中提出一种基于层次聚类的不平衡数据加权过采样方法WOHC(Weighted Oversampling method based on Hierarchical Clustering)。该方法首先使用层次聚类算法对少数类进行聚类,将少数类样本划分为多个类簇,然后计算出类簇的密度因子来确定各类簇的采样倍率,最后根据每个类簇中样本与多数类边界的距离确定采样权重。利用该方法采样并结合C4.5算法在多个数据集上进行分类实验,结果表明使用该方法能够使分类算法在F-measure和G-mean指标上分别提升7.6%和5.8%,体现了该方法的有效性。
文摘针对不平衡数据集分类结果偏向多数类的问题,重采样技术是解决此问题的有效方法之一。而传统过采样算法易合成无效样本,欠采样方法易剔除重要样本信息。基于此提出一种基于SVM的不平衡数据过采样方法SVMOM(Oversampling Method Based on SVM)。SVMOM通过迭代合成样本。在迭代过程中,通过SVM得到分类超平面;根据每个少数类样本到分类超平面的距离赋予样本距离权重;同时考虑少数类样本的类内平衡,根据样本的分布计算样本的密度,赋予样本密度权重;依据样本的距离权重和密度权重计算每个少数类样本的选择权重,根据样本的选择权重选择样本运用SMOTE合成新样本,达到平衡数据集的目的。实验结果表明,提出的算法在一定程度上解决了分类结果偏向多数类的问题,验证了算法的有效性。
文摘针对不平衡数据中类重叠区域易造成分类错误的问题,提出一种引入合成因子改进边界分类的Borderline-SMOTE过采样方法(IBSM).首先根据少数类样本近邻分布情况找出处于边界的少数类样本,然后计算边界样本对应的合成因子,并根据其取值更新该样本需生成的样本数,最后在近邻中根据合成因子挑选距离最近的top-Z少数类样本进行新样本生成.将提出的方法与八种采样方法在KNN和SVM两种分类器、10个KEEL不平衡数据集上进行对比实验,结果表明,提出的方法在大部分数据集上的F1,G-mean,AUC(Area under Curve)均获得最优值,且F1与AUC的Friedman排名最优,证明所提方法和其余采样方法相比,在处理不平衡数据中的边界样本分类问题时有更好的表现,通过合成因子设定一定的约束条件与分配策略,可以为同类研究提供思路.