Glacier runoff in mountain areas of the Shiyang River Basin(SRB), Qilian Mountain, western China is important for the river and water supply downstream. Small glaciers with area of less than 1km2 are dominant(87%) in ...Glacier runoff in mountain areas of the Shiyang River Basin(SRB), Qilian Mountain, western China is important for the river and water supply downstream. Small glaciers with area of less than 1km2 are dominant(87%) in the SRB. A modified monthly degree-day model was applied to quantify the glacier mass balance, area, and changes in glacier runoff in the SRB during 1961–2050. The comparison between the simulated and observed snow line altitude, annual glacier runoff, and mass balance from1961 to 2008 suggests that the degree-day model may be used to analyze the long-term change of glacier mass balance and runoff in the SRB. The glacier accumulation shows a significant(p<0.01) decreasing trend of-0.830 mm a-1. The mass balance also shows a significant(p<0.01) decreasing trend of-5.521 mm a-1. The glacier total runoff has significantly(p<0.05)increased by 0.079 × 105 m3 from 1961 to 2008. The monthly precipitation and air temperature are projected to significant(p<0.005) increase during2015 to 2050 under three different scenarios. The ablation is projected to significant(p<0.001) increase,while the accumulation has no significant(p=0.05)trend. The mass balance is projected to decrease, theglacier area is projected to decrease, and the glacier runoff depth is projected to increase. However, the glacier total runoff is projected to decrease. These results indicate that the glacier total runoff over glacier areas observed in 1970 reached its peak in the 2000 s. This will exacerbate the contradiction between water supply and downstream water demands in the SRB.展开更多
From 8 April to 11 October in 2005, hydrological observation of the Rongbuk Glacier catchment was carried out in the Mr. Qomolangma (Everest) region in the central Himalayas, China. The results demonstrated that due...From 8 April to 11 October in 2005, hydrological observation of the Rongbuk Glacier catchment was carried out in the Mr. Qomolangma (Everest) region in the central Himalayas, China. The results demonstrated that due to its large area with glacier lakes at the tongue of the Rongbuk Glacier, a large amount of stream flow was found at night, which indicates the strong storage characteristic of the Rongbuk Glacier catchment. There was a time lag ranging from 8 to 14 hours between daily discharge peaks and maximum melting (maximum temperature). As melting went on the time lag got shorter. A high correlation was found between the hydrological process and daily temperature during the ablation period. The runoff from April to October was about 80% of the total in the observation period. Compared with the discharge data in 1959, the runoff in 2005 was much more, and the runoff in June, July and August increased by 69%, 35% and 14%, respectively. The rising of temperature is a major factor causing the increase in runoff. The discharges from precipitation and snow and ice melting are separated. The discharge induced by precipitation accounts for about 20% of the total runoff, while snow and ice melting for about 80%.展开更多
Based on the flood affected area (FA) data of the provinces in China from 1950 to 2005, the article discusses the change of the flood patterns in China, and investigates its relationship with climate change and huma...Based on the flood affected area (FA) data of the provinces in China from 1950 to 2005, the article discusses the change of the flood patterns in China, and investigates its relationship with climate change and human activities. The flood center shifted from North China and the Yangtze-Huaihe basin in the 1950s towards the south, north and west of China, and located in the south of the Yangtze River and South China after the 1990s. The FA in the western provinces was continuously on the rise since the 1950s. There are two characteristics for the future flood pattem in China. The pattern of "flood in the south and drought in the north" depends on the north-south shift of the maximum rainfall region in eastern China. The flood intensification to the west of Hu Huanyong's line mainly results from the increase of rainfall, extreme precipitation and the melting of glaciers under the background of human activity magnification.展开更多
The Regional Integrated Environmental Model System (RIEMS 2.0) with NCEP Reanalysis II is utilized to simulate the severe freezing rain and snow storm event over southern China in January 2008, which caused severe d...The Regional Integrated Environmental Model System (RIEMS 2.0) with NCEP Reanalysis II is utilized to simulate the severe freezing rain and snow storm event over southern China in January 2008, which caused severe damage in the region. The relationships between the freezing rain process and the large-scale cir- culation, in terms of the westerly and low-level jets, water vapor transportation, and northerly wind area/intensity indices, were analyzed to tmderstand the mechanisms of the freezing rain occurrence. The results indicate the fol- lowing: (1) RIEMS 2.0 reproduced the pattern of precipi- tation in January 2008 well, especially for the temporal evolution of daily precipitation averaged over the Yangtze River valley and southern China; (2) RIEMS 2.0 repro- duced the persistent trough in the South Branch of the westerlies, of which the southwesterly currents trans- ported abundant moisture into southern China; (3) RIEMS 2.0 reasonably reproduced the pattern of frequencies of light and moderate rain, although it overestimated the frequency of rain in southern China. This study shows that RIEMS 2.0 can be feasibly applied to study extreme weather and climate events in East Asia.展开更多
基金supported by the Global Change Research Program of China (Grant No. 2013CBA01806)the China National Natural Science Foundation (Grants Nos. 41130641, 41130638, and 41271090)Shanxi key science and technology innovation team (2014KCT-27)
文摘Glacier runoff in mountain areas of the Shiyang River Basin(SRB), Qilian Mountain, western China is important for the river and water supply downstream. Small glaciers with area of less than 1km2 are dominant(87%) in the SRB. A modified monthly degree-day model was applied to quantify the glacier mass balance, area, and changes in glacier runoff in the SRB during 1961–2050. The comparison between the simulated and observed snow line altitude, annual glacier runoff, and mass balance from1961 to 2008 suggests that the degree-day model may be used to analyze the long-term change of glacier mass balance and runoff in the SRB. The glacier accumulation shows a significant(p<0.01) decreasing trend of-0.830 mm a-1. The mass balance also shows a significant(p<0.01) decreasing trend of-5.521 mm a-1. The glacier total runoff has significantly(p<0.05)increased by 0.079 × 105 m3 from 1961 to 2008. The monthly precipitation and air temperature are projected to significant(p<0.005) increase during2015 to 2050 under three different scenarios. The ablation is projected to significant(p<0.001) increase,while the accumulation has no significant(p=0.05)trend. The mass balance is projected to decrease, theglacier area is projected to decrease, and the glacier runoff depth is projected to increase. However, the glacier total runoff is projected to decrease. These results indicate that the glacier total runoff over glacier areas observed in 1970 reached its peak in the 2000 s. This will exacerbate the contradiction between water supply and downstream water demands in the SRB.
基金supported by National Key Project for Basic Research of China (No. 2007CB411503)Chinese COPES project (GYHY200706005)the National Basic Work Program of Chinese MST (Glacier Inventory of China II, Grant No.2006FY110200)
文摘From 8 April to 11 October in 2005, hydrological observation of the Rongbuk Glacier catchment was carried out in the Mr. Qomolangma (Everest) region in the central Himalayas, China. The results demonstrated that due to its large area with glacier lakes at the tongue of the Rongbuk Glacier, a large amount of stream flow was found at night, which indicates the strong storage characteristic of the Rongbuk Glacier catchment. There was a time lag ranging from 8 to 14 hours between daily discharge peaks and maximum melting (maximum temperature). As melting went on the time lag got shorter. A high correlation was found between the hydrological process and daily temperature during the ablation period. The runoff from April to October was about 80% of the total in the observation period. Compared with the discharge data in 1959, the runoff in 2005 was much more, and the runoff in June, July and August increased by 69%, 35% and 14%, respectively. The rising of temperature is a major factor causing the increase in runoff. The discharges from precipitation and snow and ice melting are separated. The discharge induced by precipitation accounts for about 20% of the total runoff, while snow and ice melting for about 80%.
基金funded by the key program of National Natural Science Foundation of China (Grant No.40730635)Commonweal and Specialized Program for Scientific Research,Ministry of Water Resources of China (Grant No.2007011024)
文摘Based on the flood affected area (FA) data of the provinces in China from 1950 to 2005, the article discusses the change of the flood patterns in China, and investigates its relationship with climate change and human activities. The flood center shifted from North China and the Yangtze-Huaihe basin in the 1950s towards the south, north and west of China, and located in the south of the Yangtze River and South China after the 1990s. The FA in the western provinces was continuously on the rise since the 1950s. There are two characteristics for the future flood pattem in China. The pattern of "flood in the south and drought in the north" depends on the north-south shift of the maximum rainfall region in eastern China. The flood intensification to the west of Hu Huanyong's line mainly results from the increase of rainfall, extreme precipitation and the melting of glaciers under the background of human activity magnification.
基金supported by the National Basic Research Program of China (Grant Nos. 2010CB950900 and 2009CB421100)the National Natural Science Foundation of China (Grant No. 91025003)
文摘The Regional Integrated Environmental Model System (RIEMS 2.0) with NCEP Reanalysis II is utilized to simulate the severe freezing rain and snow storm event over southern China in January 2008, which caused severe damage in the region. The relationships between the freezing rain process and the large-scale cir- culation, in terms of the westerly and low-level jets, water vapor transportation, and northerly wind area/intensity indices, were analyzed to tmderstand the mechanisms of the freezing rain occurrence. The results indicate the fol- lowing: (1) RIEMS 2.0 reproduced the pattern of precipi- tation in January 2008 well, especially for the temporal evolution of daily precipitation averaged over the Yangtze River valley and southern China; (2) RIEMS 2.0 repro- duced the persistent trough in the South Branch of the westerlies, of which the southwesterly currents trans- ported abundant moisture into southern China; (3) RIEMS 2.0 reasonably reproduced the pattern of frequencies of light and moderate rain, although it overestimated the frequency of rain in southern China. This study shows that RIEMS 2.0 can be feasibly applied to study extreme weather and climate events in East Asia.