为了保障城市电网规划质量和做好电力电量平衡,准确的中长期电力负荷预测变得尤为重要。针对现有方法在利用城市区域间空间关联性方面的不足,提出了一种基于动态时间规整(dynamic time warping,DTW)和时空注意力图卷积(spatio-temporal ...为了保障城市电网规划质量和做好电力电量平衡,准确的中长期电力负荷预测变得尤为重要。针对现有方法在利用城市区域间空间关联性方面的不足,提出了一种基于动态时间规整(dynamic time warping,DTW)和时空注意力图卷积(spatio-temporal attention graph convolution,ASTGCN)的预测方法。首先,通过深入分析目标城市各区域间的相关性,建立了耦合关系;其次,利用DTW算法构建邻接矩阵,捕捉城市各区域间的时空相关性;然后,应用ASTGCN模型预测各区域的负荷,以捕捉负荷的时空特征;最后,通过合并各区域的预测结果,得到整体的城市预测负荷。实验结果表明:所提方法能够更全面地捕捉城市中的时空关系,显著提高中长期负荷预测精度。展开更多