In this paper,we discuss the topological structure near the singular point (0,0) of the plane homogeneous even degree system in the first cri- tical case on the Arnold problem,and give criterion of the right-hand mult...In this paper,we discuss the topological structure near the singular point (0,0) of the plane homogeneous even degree system in the first cri- tical case on the Arnold problem,and give criterion of the right-hand multinomial coefficient.展开更多
梁法驯 1940年2月生,1963年毕业于武汉大学数学系,1993年晋升为教授。主要从事“数学分析”、“复变函数”、“常微分方程”、“泛函分析”、“差分方程”等课程的教学工作。1993年获曾宪梓教育基金会高等师范院校教师奖三等奖。 发表论...梁法驯 1940年2月生,1963年毕业于武汉大学数学系,1993年晋升为教授。主要从事“数学分析”、“复变函数”、“常微分方程”、“泛函分析”、“差分方程”等课程的教学工作。1993年获曾宪梓教育基金会高等师范院校教师奖三等奖。 发表论文17篇,主要有: 1. The Distribution of Zeros of Solutions of First-Order Delay Differential Equations, Journal of Mathmatical Analysis and Applications(美国), 1994, Vol. 186, No.2. 2. Simple Criteria for Stability Interval Polynomials, International Journal of Control(英国), 1989, Vol. 50. No.展开更多
This paper deals with the blow-up phenomenon, particularly, the geometric blow-up mechanism, of classical solutions to the Cauchy problem for quasilinear hyperbolic systems in the critical case. We prove that it is st...This paper deals with the blow-up phenomenon, particularly, the geometric blow-up mechanism, of classical solutions to the Cauchy problem for quasilinear hyperbolic systems in the critical case. We prove that it is still the envelope of the same family of characteristics which yields the blowup of classical solutions to the Cauchy problem in the critical case.展开更多
文摘In this paper,we discuss the topological structure near the singular point (0,0) of the plane homogeneous even degree system in the first cri- tical case on the Arnold problem,and give criterion of the right-hand multinomial coefficient.
文摘梁法驯 1940年2月生,1963年毕业于武汉大学数学系,1993年晋升为教授。主要从事“数学分析”、“复变函数”、“常微分方程”、“泛函分析”、“差分方程”等课程的教学工作。1993年获曾宪梓教育基金会高等师范院校教师奖三等奖。 发表论文17篇,主要有: 1. The Distribution of Zeros of Solutions of First-Order Delay Differential Equations, Journal of Mathmatical Analysis and Applications(美国), 1994, Vol. 186, No.2. 2. Simple Criteria for Stability Interval Polynomials, International Journal of Control(英国), 1989, Vol. 50. No.
基金Project supported by the Special Funds for Major State Basic Research Project of ChinaSpecialized Research Fund for the Doctoral Program of Higher Education (No. 20020246002).
文摘This paper deals with the blow-up phenomenon, particularly, the geometric blow-up mechanism, of classical solutions to the Cauchy problem for quasilinear hyperbolic systems in the critical case. We prove that it is still the envelope of the same family of characteristics which yields the blowup of classical solutions to the Cauchy problem in the critical case.