期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
薄皮甜瓜表型性状的主成分分析 被引量:25
1
作者 胡建斌 马肖静 李琼 《江西农业学报》 CAS 2010年第12期30-33,共4页
对不同来源的34份薄皮甜瓜品种的19个表型性状进行了主成分分析。结果表明,果实形态和品质相关性状变异系数较大,是薄皮甜瓜表型变异的主要来源,其中果形指数变异系数最大,达80.13%。19个表型性状可归为6个主成分,即果形因子、植株生长... 对不同来源的34份薄皮甜瓜品种的19个表型性状进行了主成分分析。结果表明,果实形态和品质相关性状变异系数较大,是薄皮甜瓜表型变异的主要来源,其中果形指数变异系数最大,达80.13%。19个表型性状可归为6个主成分,即果形因子、植株生长因子、品质因子、熟性因子、单果重因子和种子形态因子,其累计贡献率为80.832%。根据主成分值对供试材料的主要性状进行综合评价,王海、十道梨、金巴齿、甜梨王、花脆瓜等10个品种综合表现优良。 展开更多
关键词 薄皮甜瓜 表型性状 成分分析 Characters 形态因子 变异系数 累计贡献率 综合评价 综合表现 要性状 主成分值 相关性状 甜瓜品种 生长因子 品质因子 果形指数 果实形态 不同来源 表型变异 重因子
下载PDF
基于特征组合优化的工业互联网恶意行为实时检测方法
2
作者 胡向东 张琴 《电子学报》 EI CAS CSCD 北大核心 2024年第9期3075-3085,共11页
工业互联网中节点数据具有高维、冗余和海量等特性,传统的恶意行为检测模型无法对工业互联网恶意攻击行为做出快速且准确的判断,提出基于特征组合优化的工业互联网恶意行为实时检测方法.采用改进的相关性快速过滤算法和基于奇异值分解... 工业互联网中节点数据具有高维、冗余和海量等特性,传统的恶意行为检测模型无法对工业互联网恶意攻击行为做出快速且准确的判断,提出基于特征组合优化的工业互联网恶意行为实时检测方法.采用改进的相关性快速过滤算法和基于奇异值分解的主成分分析算法对工业互联网恶意行为样本数据进行特征组合优化,基于对称不确定性信息度量指标和近似马尔科夫毯准则进行特征相关性计算、冗余特征识别与排除,通过参数特征维度的不同配置得到若干候选特征组合;利用决策树评估器筛选出准确率最高的候选特征组合;通过奇异值分解的主成分分析进一步进行特征降维,得到低维高信息量的最优特征组合;结合极端梯度提升算法和优化的特征组合对工业互联网恶意行为样本进行分类,基于密西西比州立大学多分类电力系统攻击样本数据对本文方法进行了验证;实验结果表明,特征组合优化检测模型训练时间可缩减57.53%,单个样本的平均检测时间为0.002 ms,可减少23.99%,基于特征组合优化的检测模型的准确率、召回率和F1值较特征优化前分别提升了1.11%、1.25%和1.01%.本文方法的突出优势表现为在提升模型检测效果的同时可明显降低模型检测时间,能更好适应工业互联网的实时性要求. 展开更多
关键词 工业互联网 改进的相关性快速过滤算法 奇异分解的成分分析 特征组合优化 极端梯度提升 恶意行为实时检测
下载PDF
基于PCA-SBM的轨道交通站点接驳评价体系——以厦门市轨道交通站点为例
3
作者 叶斯逸 《科技和产业》 2024年第1期94-99,共6页
以慢行交通规划为指导,搭建基于PCA-SBM(主成分分析-基于松弛值测算)的效率评价模型,从管理者视角对厦门市轨道交通单车接驳现状作出评价。研究发现:厦门市站点接驳效率整体偏低,多呈现高投入、中回报的数据表现,需加强高峰日的引导轮次... 以慢行交通规划为指导,搭建基于PCA-SBM(主成分分析-基于松弛值测算)的效率评价模型,从管理者视角对厦门市轨道交通单车接驳现状作出评价。研究发现:厦门市站点接驳效率整体偏低,多呈现高投入、中回报的数据表现,需加强高峰日的引导轮次;电子围栏使用率低,应加强政企联动,做好及时的高峰时期车辆调度与用户前端引导,提升用户对电子围栏的感知,推动落实智能化管理。 展开更多
关键词 效率评价 轨道交通站点 共享单车 PCA-SBM(成分分析-基于松弛测算)模型
下载PDF
基于奇异值第一主成分的睡眠脑电分期方法研究 被引量:3
4
作者 彭振 韦明 +2 位作者 郭建平 肖蒙 王迎雪 《现代生物医学进展》 CAS 2014年第7期1368-1372,共5页
目的:脑电信号含多种噪声和伪迹,信噪比较低,特征提取前必须进行复杂的预处理,严重影响睡眠分期的速度。鉴于此,本文提出一种基于奇异值第一主成分的睡眠脑电分期方法,该方法抗噪性能较强,可省去预处理过程,减少计算量,提高睡眠分期的... 目的:脑电信号含多种噪声和伪迹,信噪比较低,特征提取前必须进行复杂的预处理,严重影响睡眠分期的速度。鉴于此,本文提出一种基于奇异值第一主成分的睡眠脑电分期方法,该方法抗噪性能较强,可省去预处理过程,减少计算量,提高睡眠分期的效率。方法:对未经过预处理的睡眠脑电进行奇异系统分析,研究奇异谱曲线,提取奇异值第一主成分,探索其随睡眠状态变化的规律。并通过支持向量机利用奇异值第一主成分对睡眠分期。结果:奇异值第一主成分不仅能表征脑电信号主体,而且可以抑制噪声、降低维数。随着睡眠的深入,奇异值第一主成分的值逐渐增大,但在REM期处于S1期和S2期之间。经MIT-BIH睡眠数据库中5例同导联位置的脑电数据测试(仅1导脑电数据),睡眠脑电分期的准确率达到86.4%。结论:在未对脑电信号进行预处理的情况下,提取的睡眠脑电的奇异值第一主成分能有效表征睡眠状态,是一种有效的睡眠分期依据。本文运用提出的方法仅采用1导脑电数据,就能得到较为满意的睡眠分期结果。该方法有较强的分类性能,且抗噪能力强,不需要对脑电作复杂的预处理,计算量小,方法简单,很大程度上提高了睡眠分期的效率。 展开更多
关键词 脑电 睡眠分期 奇异第一成分 抗噪
原文传递
春大豆性状的多元遗传分析及应用分析 被引量:7
5
作者 战勇 罗赓彤 +1 位作者 刘胜利 孔新 《新疆农业科学》 CAS CSCD 2000年第2期55-59,共5页
应用多元遗传分析的方法对 2 4个春大豆的株高、主茎节数、单株荚数、单株粒数、单株粒重、单荚粒数、十株生物产量、百粒重、生育前期 (出苗到开花的天数 )、生育后期 (开花到成熟的天数 )、全生育期和收获株数等 1 2种农艺性状进行主... 应用多元遗传分析的方法对 2 4个春大豆的株高、主茎节数、单株荚数、单株粒数、单株粒重、单荚粒数、十株生物产量、百粒重、生育前期 (出苗到开花的天数 )、生育后期 (开花到成熟的天数 )、全生育期和收获株数等 1 2种农艺性状进行主成分分析 ,看出影响大豆产量的主要因素是单株粒重、单株粒数、主茎节数、单荚粒数及生育前期 ,为品种 (系 )应用及分类和亲本选配提供理论依据。根据其第一、二主成分值 ,将所有品种 (系 )分为五大类 ,评述类内各品种 (系 )的主要特征 ,并针对不同生育期 。 展开更多
关键词 春大豆 多元遗传分析 农艺性状 主成分值
下载PDF
基于PCA-Entropy TOPSIS 的甘薯品种块根质构品质评价 被引量:10
6
作者 李玲 徐舒 +4 位作者 曹如霞 陈玲玲 崔鹏 吕尊富 陆国权 《中国农业科学》 CAS CSCD 北大核心 2020年第11期2161-2170,I0001,I0002,共12页
【目的】质构品质是甘薯块根品质评价的重要指标,直接影响其鲜食和产后加工。质构品质评价是甘薯综合利用过程和品质育种的重要环节。完善甘薯块根质构品质评价体系,为其利用和育种提供参考。【方法】应用物性分析仪质地多面分析法对45... 【目的】质构品质是甘薯块根品质评价的重要指标,直接影响其鲜食和产后加工。质构品质评价是甘薯综合利用过程和品质育种的重要环节。完善甘薯块根质构品质评价体系,为其利用和育种提供参考。【方法】应用物性分析仪质地多面分析法对45个甘薯品种块根的硬度、黏附性、内聚性、弹性、胶黏性和咀嚼性进行测定,分析各质构参数间的相关性,采用主成分分析确定各个参数权重,并结合TOPSIS法对45个甘薯品种块根的质构品质进行综合评价。【结果】45个甘薯品种的质构参数均有一定差异,咀嚼性和黏附性变异系数较大,分别为35.23%和49.15%。咀嚼性变化范围为60.30—284.66 N,平均为149.29 N,浙薯13的咀嚼性最大,为284.66 N,166-7和龙薯14的咀嚼性较小,分别为60.30和77.28 N;黏附性变化范围为-10.4—-0.80 J,平均为-4.71 J,龙薯31的黏附性最大,为-1.34 J,冀紫薯2号和普薯32的黏附性较小,分别为-9.34和-10.40 J。内聚性和弹性的变异系数较小,分别为14.27%和15.75%。内聚性变化范围为0.15—0.28,平均为0.21,商薯19的内聚性最大,为0.28,红皮白心的内聚性最小,为0.15;弹性变化范围为5.01—8.93 mm,平均为6.59 mm,西农431的弹性最大,为8.93 mm,166-7的弹性最小,为5.01 mm。胶黏性变异系数为23.84%,变化范围为11.97—32.78 N,平均为22.20 N,普薯32的胶黏性最大,为32.78 N,166-7的胶黏性最小,为11.97 N;硬度变异系数为19.47%,变化范围为59.79—143.41 N,平均为105 N,绵粉1号、商徐紫1号和苏薯29的块根硬度大于140.00 N,166-7的块根硬度最小,为59.79 N。相关性分析表明,块根硬度与胶黏性、咀嚼性均呈极显著正相关,胶黏性与咀嚼性呈极显著正相关,内聚性与弹性、胶黏性、咀嚼性均呈极显著正相关,弹性与胶黏性、咀嚼性均呈极显著正相关。6个质构参数经主成分分析,被提取的3个主成分累计方差贡献率达94.674%,硬度、黏附性、内聚性、弹性、胶黏性和咀嚼性的权重分别为0.121、0.161、0.102、0.232、0.162和0.223。【结论】明确了淀粉型甘薯质构品质优良的品种为龙薯31、商薯19和冀薯982;鲜食型甘薯质构品质优良的品种为苏薯16、紫罗兰和徐薯32。 展开更多
关键词 甘薯 质构多面分析 相关性 成分分析-熵 TOPSIS法
下载PDF
基于光谱融合的火星表面相关矿物分类方法研究 被引量:6
7
作者 徐伟杰 武中臣 +4 位作者 朱香平 张江 凌宗成 倪宇恒 郭恺琛 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2018年第6期1926-1932,共7页
多源数据融合能在一定程度上扩展数据信息量,更利于建立准确和稳健的分析模型。行星探测中常采用多个载荷协同分析同一目标,因此利用多载荷数据融合辨别分析火星矿物具有重要科学意义和应用前景。分别采用可见近红外(Vis-NIR)反射光谱... 多源数据融合能在一定程度上扩展数据信息量,更利于建立准确和稳健的分析模型。行星探测中常采用多个载荷协同分析同一目标,因此利用多载荷数据融合辨别分析火星矿物具有重要科学意义和应用前景。分别采用可见近红外(Vis-NIR)反射光谱和拉曼(Raman)散射光谱两种技术手段测量了火星表面主要矿物(硅酸盐、硫酸盐、碳酸盐)的光谱特征曲线,并对获取的光谱数据进行基线校正、Savitzky-Golay平滑以及标准矢量归一化(SNV)等必要的数据预处理。根据光谱特征,首先选取样品Vis-NIR和Raman数据信息丰富、信噪比高、光谱信号重叠小的波段(Vis-NIR:430~2 430nm,Raman:130~1 100cm^(-1)),然后运用软独立建模分类法(SIMCA)、主成分分析法-K最邻近分类法(PCA-KNN)分别建立基于Vis-NIR,Raman及两者融合(累加融合、串联融合)的矿物聚类分析模型。采用SIMCA算法的矿物聚类准确率由单一光谱建模的72.6%(Vis-NIR),90.7%(Raman)提升为融合建模的96.3%(累加融合)和98.1%(串联融合);采用PCA-KNN的准确率由单一光谱建模的68.9%(Vis-NIR),72.9%(Raman)提升为融合后的80.3%(累加融合)和92.6%(串联融合)。实验结果表明:光谱融合能够发挥Vis-NIR,Raman各自的数据优势,所建火星表面相关矿物分类模型的预测准确度更高。该研究为我国火星探测任务奠定了岩石分类方法基础。 展开更多
关键词 可见近红外光谱 拉曼光谱 光谱融合 软独立建模分类法 成分分析-K最邻近分类法
下载PDF
一种基于GLRAM的掌纹识别改进算法
8
作者 彭晏飞 张彬 林森 《计算机应用与软件》 CSCD 2015年第10期155-158,共4页
在小样本情况下,传统的2DPCA算法采用的训练样本的平均值不一定就是训练样本分布的中心,而矩阵广义低秩逼近(GLRAM)算法需要多次迭代求解左右投影变换矩阵,复杂度高。为了解决这些问题,利用基于样本中间值的2DPCA算法(M2DPCA),通过协方... 在小样本情况下,传统的2DPCA算法采用的训练样本的平均值不一定就是训练样本分布的中心,而矩阵广义低秩逼近(GLRAM)算法需要多次迭代求解左右投影变换矩阵,复杂度高。为了解决这些问题,利用基于样本中间值的2DPCA算法(M2DPCA),通过协方差矩阵获得右变换矩阵,进一步对其投影特征矩阵降维获得左投影变换矩阵,提出一种改进的GLRAM算法的掌纹识别方法。在Poly U掌纹库上实验表明:改进的GLRAM算法在节省了大量训练时间的同时,取得了比GLRAM算法更好的重构效果和识别率。 展开更多
关键词 掌纹识别 数据降维 中间的二维成分分析(M2DPCA) 矩阵广义低秩逼近(GLRAM)
下载PDF
城市产业生态化水平指标体系构建与综合评价 被引量:11
9
作者 周映伶 罗胤晨 文传浩 《统计与决策》 CSSCI 北大核心 2021年第6期73-77,共5页
文章结合产业生态化的定义和压力-状态-响应(PSR)模型,建立城市产业生态化水平的评价指标体系,并基于主成分分析-熵值法对重庆市1997—2017年产业生态化水平进行综合评价。结果表明:(1)重庆市产业生态化水平受到生态产业动态发展(F1)、... 文章结合产业生态化的定义和压力-状态-响应(PSR)模型,建立城市产业生态化水平的评价指标体系,并基于主成分分析-熵值法对重庆市1997—2017年产业生态化水平进行综合评价。结果表明:(1)重庆市产业生态化水平受到生态产业动态发展(F1)、产业结构高级化发展(F2)和产业集聚发展(F3)这三个指标的影响;(2)2017年是所有年份中产业生态化发展水平最高的一年,2002年是所有年份中产业生态化水平最低的一年;(3)产业生态化水平主要受到产业生产过程中产业结构调整、节能减排和循环利用力度、经济增长率、第三产业产值占GDP比重、产业集聚发展的影响。 展开更多
关键词 产业生态化 压力-状态-响应模型 成分分析-熵 重庆市
下载PDF
An Extended Closed-loop Subspace Identification Method for Error-in-variables Systems 被引量:1
10
作者 刘涛 邵诚 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第6期1136-1141,共6页
A closed-loop subspace identification method is proposed for industrial systems subject to noisy input-output observations, known as the error-in-variables (EIV) problem. Using the orthogonal projection approach to el... A closed-loop subspace identification method is proposed for industrial systems subject to noisy input-output observations, known as the error-in-variables (EIV) problem. Using the orthogonal projection approach to eliminate the noise influence, consistent estimation is guaranteed for the deterministic part of such a system. A strict proof is given for analyzing the rank condition for such orthogonal projection, in order to use the principal component analysis (PCA) based singular value decomposition (SVD) to derive the extended observability matrix and lower triangular Toeliptz matrix of the plant state-space model. In the result, the plant state matrices can be retrieved in a transparent manner from the above matrices. An illustrative example is shown to demonstrate the effectiveness and merits of the proposed subspace identification method. 展开更多
关键词 closed-loop error-in-variables system subspace identification extended observability matrix orthogonal projection
下载PDF
Adaptive WNN aerodynamic modeling based on subset KPCA feature extraction 被引量:4
11
作者 孟月波 邹建华 +1 位作者 甘旭升 刘光辉 《Journal of Central South University》 SCIE EI CAS 2013年第4期931-941,共11页
In order to accurately describe the dynamic characteristics of flight vehicles through aerodynamic modeling, an adaptive wavelet neural network (AWNN) aerodynamic modeling method is proposed, based on subset kernel pr... In order to accurately describe the dynamic characteristics of flight vehicles through aerodynamic modeling, an adaptive wavelet neural network (AWNN) aerodynamic modeling method is proposed, based on subset kernel principal components analysis (SKPCA) feature extraction. Firstly, by fuzzy C-means clustering, some samples are selected from the training sample set to constitute a sample subset. Then, the obtained samples subset is used to execute SKPCA for extracting basic features of the training samples. Finally, using the extracted basic features, the AWNN aerodynamic model is established. The experimental results show that, in 50 times repetitive modeling, the modeling ability of the method proposed is better than that of other six methods. It only needs about half the modeling time of KPCA-AWNN under a close prediction accuracy, and can easily determine the model parameters. This enables it to be effective and feasible to construct the aerodynamic modeling for flight vehicles. 展开更多
关键词 WAVELET neural network fuzzy C-means clustering kernel principal components analysis feature extraction aerodynamic modeling
下载PDF
A DESCRIPTION METHOD FOR ARBITRARILY SHAPED AND SIZED GRANULES IN 2D IMAGE
12
作者 Chen Ken Zhao Pan Zhao Xuemei 《Journal of Electronics(China)》 2009年第3期423-427,共5页
An alternative method is proposed in this letter for describing the arbitrary shape and size for granules in 2D image.After image binarization, the edge points on contour are detected, by which the centroid of the sha... An alternative method is proposed in this letter for describing the arbitrary shape and size for granules in 2D image.After image binarization, the edge points on contour are detected, by which the centroid of the shape in question is sought using the moment calculation.Using Principal Component Analysis(PCA), the major and minor diameters are computed.Based on the signature curve-fitting, the first-order derivative is taken so as to seek all the characteristic vertices.By connecting the vertices found, the simplified polygon is formed and utilized for shape and size descriptive purposes.The developed algorithm is run on two given real particle images, and the execution results indicate that the computed parameters can technically well describe the shape and size for the original particles, being able to provide a ready-to-use database for machine vision system to perform related data processing tasks. 展开更多
关键词 Particle shape and size Granule image Shape descriptor Principal Component Analysis(PCA) Machine vision
下载PDF
Principal component analysis using neural network
13
作者 杨建刚 孙斌强 《Journal of Zhejiang University Science》 CSCD 2002年第3期298-304,共7页
The authors present their analysis of the differential equation d X(t)/ d t = AX(t)-X T (t)BX(t)X(t) , where A is an unsymmetrical real matrix, B is a positive definite symmetric real matrix, X ∈... The authors present their analysis of the differential equation d X(t)/ d t = AX(t)-X T (t)BX(t)X(t) , where A is an unsymmetrical real matrix, B is a positive definite symmetric real matrix, X ∈R n; showing that the equation characterizes a class of continuous type full feedback artificial neural network; We give the analytic expression of the solution; discuss its asymptotic behavior; and finally present the result showing that, in almost all cases, one and only one of following cases is true. 1. For any initial value X 0∈R n, the solution approximates asymptotically to zero vector. In this case, the real part of each eigenvalue of A is non positive. 2. For any initial value X 0 outside a proper subspace of R n, the solution approximates asymptotically to a nontrivial constant vector (X 0) . In this case, the eigenvalue of A with maximal real part is the positive number λ=‖(X 0)‖ 2 B and (X 0) is the corresponding eigenvector. 3. For any initial value X 0 outside a proper subspace of R n, the solution approximates asymptotically to a non constant periodic function (X 0,t) . Then the eigenvalues of A with maximal real part is a pair of conjugate complex numbers which can be computed. 展开更多
关键词 PCA Unsymmetrical real matrix EIGENVALUE EIGENVECTOR Neural network
下载PDF
A Factor Analysis of the Tourism in the Mexican Province of Michoacan
14
作者 Jose Cesar Lenin Navarro Chavez America Ivonne Zamora Torres 《Chinese Business Review》 2012年第3期265-273,共9页
The tourism is a key branch in the world wide economy nowadays, and revenues account for one third of total income in the world. Many nations are trying to improve their tourism sector attracting more tourists every y... The tourism is a key branch in the world wide economy nowadays, and revenues account for one third of total income in the world. Many nations are trying to improve their tourism sector attracting more tourists every year in order to impact social welfare. This study addresses two research questions: (1) What are the factors that impact on tourism sector? and (2) Does the tourism really impact on social welfare of the communities? The objectives of this work are to analyze the variables that impact on the tourism in the Mexican providence of Michoacan and also to find out if the tourism sector is impacting on social welfare of the province, with the propose of answering this questions 41 variables were selected being 63 municipalities of Michoacan province in the case of study. Analysis Factorial of Correspondences (AFC) through the analysis of principal components methodology is employed in this article. The analysis is divided into five phases: (1) reliability testing; (2) the calculation of a matrix that expresses the joint variability of the variables; (3) extraction of the optimal number of factors; (4) the rotation of solutions for the ease of interpretation; and (5) the estimation of the scores graphically. The results showed that the variables that impact on tourism are several the most representative tourism infrastructure and complementary services restaurants, lodging with category five- and four- star travel, visitors foreign share of the Economic Active Population (EAP) in the tertiary sector, percentage of EAP women, percentage of economically active men and Gross Domestic Product (GDP) per capita among others. However the analysis of the Human Development Index (HDI) is not associated with the tourism variables 展开更多
关键词 TOURISM social welfare factorial analysis Mexico
下载PDF
Study On the Influencing Factors of Energy-Saving and Environmental Protection Industries in Shanghai
15
作者 Gang Yang Zhengzheng Wang Xuanchao Cai 《International English Education Research》 2015年第9期83-85,共3页
By using principal component analysis, this paper selected some appropriate influencing indicators, and constructed multiple linear regression models to predict the development of energy-saving environmental protectio... By using principal component analysis, this paper selected some appropriate influencing indicators, and constructed multiple linear regression models to predict the development of energy-saving environmental protection industry(ESEPl) in Shanghai. The Influencing Factors can be categorized into comprehensive economic factors and environmental factors, and GDP of the second industries and the total industries GDP in comprehensive economic factors have the strongest correlation, while in the environmental index factors, the total discharge of waste water has the strongest correlation. On the basis of influencing factors study, the regression model shows that by the end of 2020, the industry investment will reach 89.788 billion RMB, which proves that the development of ESEPI in Shanghai would grow continuously and dramatically. 展开更多
关键词 ESEPI Principal component analysis Multiple linear regression
下载PDF
Water Quality Evaluation Model Based on Principal Component Analysis and Information Entropy:Application in Jinshui River 被引量:8
16
作者 马建琴 郭晶晶 刘晓洁 《Journal of Resources and Ecology》 CSCD 2010年第3期252+249-251,共4页
水质评价对决策者决定水的使用功效尤为重要。水质综合评价系统中涉及到大量因子与指标,因子之间相互作用,致使水质的评价工作相对困难。主成分分析法可以消除因子间的相关性,因而被广泛应用于水质评价,但其忽略了数据离散程度的问题。... 水质评价对决策者决定水的使用功效尤为重要。水质综合评价系统中涉及到大量因子与指标,因子之间相互作用,致使水质的评价工作相对困难。主成分分析法可以消除因子间的相关性,因而被广泛应用于水质评价,但其忽略了数据离散程度的问题。熵值法则考虑了数据的离散特点。为更好地进行水质的综合评价,本文提出把主成分分析法和熵值法结合起来确定指标权重的方法,建立了水质评价模型,并采用该模型对郑州市金水河再生水2009年的水质情况进行评价,将评价结果与单独采用主成分分析或熵值法的结果进行了比较。结果表明了该方法的可行性与实用性,能够为非常规水资源利用提供理论依据和决策参考。 展开更多
关键词 impact factors water quality evaluation principal component analysis(PCA) information entropy(IE) WEIGHT unconventional water
原文传递
Singular value diagnosis in dam safety monitoring effect values 被引量:8
17
作者 GU ChongShi ZHAO ErFeng +1 位作者 JIN Yi SU HuaiZhi 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第5期1169-1176,共8页
Based on the principal component analysis, principal components that have major influence on data variance are determined by the energy percentage method according to the correlation between monitoring effects. Then p... Based on the principal component analysis, principal components that have major influence on data variance are determined by the energy percentage method according to the correlation between monitoring effects. Then principal components are extracted through reconstructing multi effects. Moreover, combining with the optimal estimation theory, the method of singular value diagnosis in dam safety monitoring effect values is proposed. After dam monitoring information matrix is obtained, single effect state estimation matrix and multi effect fusion estimation matrix are constructed to make diagnosis on singular values to reduce false alarm rate. And the diagnosis index is calculated by PCA. These methods have already been applied to an actual project and the result shows the ability of the monitoring effect reflecting dam evolution behavior is improved as dam safety monitoring effect fusion estimation can take accurate identification on singular values and achieve data reduction, filter out noise and lower false alarm rate effectively. 展开更多
关键词 dam safety monitoring EFFECT singular value diagnosis principal component analysis optimal estimation
原文传递
PROJECTION-PURSUIT BASED PRINCIPAL COMPONENT ANALYSIS:A LARGE SAMPLE THEORY
18
作者 Jian ZHANG Institute of Mathematics,Statistics and Actuarial Science,University of Kent,Canterbury,Kent CT2 7NF,U.K. Institute of Systems Science,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100080,China 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2006年第3期365-385,共21页
The principal component analysis (PCA) is one of the most celebrated methods in analysing multivariate data. An effort of extending PCA is projection pursuit (PP), a more general class of dimension-reduction techn... The principal component analysis (PCA) is one of the most celebrated methods in analysing multivariate data. An effort of extending PCA is projection pursuit (PP), a more general class of dimension-reduction techniques. However, the application of this extended procedure is often hampered by its complexity in computation and by lack of some appropriate theory. In this paper, by use of the empirical processes we established a large sample theory for the robust PP estimators of the principal components and dispersion matrix. 展开更多
关键词 Dispersion matrices eigenvalues and eigenvectors empirical processes principal component analysis projection pursuit (PP).
原文传递
Visual tracking based on the sparse representation of the PCA subspace
19
作者 陈典兵 朱明 王慧利 《Optoelectronics Letters》 EI 2017年第5期392-396,共5页
We construct a collaborative model of the sparse representation and the subspace representation. First, we represent the tracking target in the principle component analysis(PCA) subspace, and then we employ an L_1 reg... We construct a collaborative model of the sparse representation and the subspace representation. First, we represent the tracking target in the principle component analysis(PCA) subspace, and then we employ an L_1 regularization to restrict the sparsity of the residual term, an L_2 regularization term to restrict the sparsity of the representation coefficients, and an L_2 norm to restrict the distance between the reconstruction and the target. Then we implement the algorithm in the particle filter framework. Furthermore, an iterative method is presented to get the global minimum of the residual and the coefficients. Finally, an alternative template update scheme is adopted to avoid the tracking drift which is caused by the inaccurate update. In the experiment, we test the algorithm on 9 sequences, and compare the results with 5 state-of-art methods. According to the results, we can conclude that our algorithm is more robust than the other methods. 展开更多
关键词 Distributed computer systems Principal component analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部