期刊导航
期刊开放获取
重庆大学
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Contourlet变换的无参考立体图像质量评价
被引量:
3
1
作者
李永生
桑庆兵
《光学技术》
CAS
CSCD
北大核心
2016年第6期538-544,共7页
立体图像的景物生动逼真,给人一种身临其境的全新视觉享受,但在制作、存储和传输过程中往往会产生失真。为了评价立体图像的质量优劣,提出了一种基于轮廓波(Contourlet)变换的无参考立体图像质量评价算法。通过对失真的左、右图像分别...
立体图像的景物生动逼真,给人一种身临其境的全新视觉享受,但在制作、存储和传输过程中往往会产生失真。为了评价立体图像的质量优劣,提出了一种基于轮廓波(Contourlet)变换的无参考立体图像质量评价算法。通过对失真的左、右图像分别进行主成分分析(PCA)融合来生成新的融合图像,并使用基于SSIM(Structural Similarity)立体匹配算法生成视差图和匹配差值图,然后对上述三张图片进行Contourlet变换,再然后使用自定义的高频能量指标并结合边缘强度和信息熵,最后将得到的特征输入支持向量回归(Support Vector Regression,SVR)模型中学习,得出质量评价分数。该方法在德克萨斯大学公布的立体图像库中进行了验证,线性相关系数和斯皮尔曼相关系数在Phase I库中可高达0.957和0.947,在Phase II库中也可高达0.944和0.934,与主观评价吻合度很高,优于最新的一些评价方法。
展开更多
关键词
SSIM立体匹配
CONTOURLET变换
无参考立体
图像
质量评价
支持向量回归
主成分分析图像融合
原文传递
题名
基于Contourlet变换的无参考立体图像质量评价
被引量:
3
1
作者
李永生
桑庆兵
机构
江南大学物联网工程学院
出处
《光学技术》
CAS
CSCD
北大核心
2016年第6期538-544,共7页
基金
国家自然科学基金(61170120)
江苏省产学研前瞻性联合研究项目(BY2013015-41)
文摘
立体图像的景物生动逼真,给人一种身临其境的全新视觉享受,但在制作、存储和传输过程中往往会产生失真。为了评价立体图像的质量优劣,提出了一种基于轮廓波(Contourlet)变换的无参考立体图像质量评价算法。通过对失真的左、右图像分别进行主成分分析(PCA)融合来生成新的融合图像,并使用基于SSIM(Structural Similarity)立体匹配算法生成视差图和匹配差值图,然后对上述三张图片进行Contourlet变换,再然后使用自定义的高频能量指标并结合边缘强度和信息熵,最后将得到的特征输入支持向量回归(Support Vector Regression,SVR)模型中学习,得出质量评价分数。该方法在德克萨斯大学公布的立体图像库中进行了验证,线性相关系数和斯皮尔曼相关系数在Phase I库中可高达0.957和0.947,在Phase II库中也可高达0.944和0.934,与主观评价吻合度很高,优于最新的一些评价方法。
关键词
SSIM立体匹配
CONTOURLET变换
无参考立体
图像
质量评价
支持向量回归
主成分分析图像融合
Keywords
stereo matching of SSIM
Contourlet transform
no-reference quality assessment for stereoscopic images
support vector regression(SVR)
principal component analysis(PCA) image fusion
分类号
TP391 [自动化与计算机技术—计算机应用技术]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于Contourlet变换的无参考立体图像质量评价
李永生
桑庆兵
《光学技术》
CAS
CSCD
北大核心
2016
3
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部