期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于多元数据的甘蔗产量预报
1
作者 陶伟 粟华林 +5 位作者 成振华 王玮 吕善行 周坤论 朱鱼扬 李强 《甘蔗糖业》 2025年第2期62-68,共7页
为提升甘蔗产量智能预报水平,以2021~2023年广西14个地市的甘蔗年产量为研究对象,结合气象要素的日均值数据,通过主成分分析法将各个要素降至一维,对比4种不同机器学习算法下的气象要素与甘蔗产量的预测值。结果表明:随机森林算法产量... 为提升甘蔗产量智能预报水平,以2021~2023年广西14个地市的甘蔗年产量为研究对象,结合气象要素的日均值数据,通过主成分分析法将各个要素降至一维,对比4种不同机器学习算法下的气象要素与甘蔗产量的预测值。结果表明:随机森林算法产量预测误差最小,为0.082 t,误差次低值为支持向量回归的0.091 t;K近邻回归在K值为4时误差为0.098 t;多元线性回归算法在拟合中表现最差,误差为0.921 t。在拟合过程中最重要的气象和土壤要素分别为相对湿度、气温和土壤湿度。研究结果可为广西甘蔗产量智能预报提供科学支撑。 展开更多
关键词 主成分分析法降维 机器学习 甘蔗产量 气象 土壤
下载PDF
KERNEL NEIGHBORHOOD PRESERVING EMBEDDING FOR CLASSIFICATION 被引量:2
2
作者 Tao Xiaoyan Ji Hongbing Men Jian 《Journal of Electronics(China)》 2009年第3期374-379,共6页
The Neighborhood Preserving Embedding(NPE) algorithm is recently proposed as a new dimensionality reduction method.However, it is confined to linear transforms in the data space.For this, based on the NPE algorithm, a... The Neighborhood Preserving Embedding(NPE) algorithm is recently proposed as a new dimensionality reduction method.However, it is confined to linear transforms in the data space.For this, based on the NPE algorithm, a new nonlinear dimensionality reduction method is proposed, which can preserve the local structures of the data in the feature space.First, combined with the Mercer kernel, the solution to the weight matrix in the feature space is gotten and then the corresponding eigenvalue problem of the Kernel NPE(KNPE) method is deduced.Finally, the KNPE algorithm is resolved through a transformed optimization problem and QR decomposition.The experimental results on three real-world data sets show that the new method is better than NPE, Kernel PCA(KPCA) and Kernel LDA(KLDA) in performance. 展开更多
关键词 Kernel Neighborhood Preserving Embedding (KNPE) Neighborhood structure FEATUREEXTRACTION QR decomposition
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部