Density, ρ, ultrasonic speed, u, and viscosity, η, of binary mixtures of 2-methyl-2-propanol (2M2P) with acetonitrile (AN), propionitrile (PN) and butyronitrile (BN) including those of pure liquids are measured over...Density, ρ, ultrasonic speed, u, and viscosity, η, of binary mixtures of 2-methyl-2-propanol (2M2P) with acetonitrile (AN), propionitrile (PN) and butyronitrile (BN) including those of pure liquids are measured over the entire composition range at temperatures 298.15, 303.15 and 308.15 K. From these experimental data, the excess available volume, E a V , excess free volume, E f V , excess isothermal compressibility, E T β , excess thermal expansion coefficient, E α , and excess internal pressure, E i π , are calculated. The variation of these properties with composition and temperature are discussed in terms of molecular interactions between unlike molecules of the mixtures. It is found that the values of E a V , E f V , E T β and E α are positive and those of E i π are negative for all the mixtures at each temperature studied, indicating the presence of weak interactions between 2M2P and AN/PN/BN molecules. The variations of E a V , E f V , E T β , E α and E i π values with composition indicate that the interactions in these mixtures follow the order: AN<PN<BN, i.e., the 2M2P-nitrile interaction decreases with the increase of alkyl chain length in these nitrile molecules. In addition, the theoretical ultrasonic velocity is calculated using the scaled particle theory and compared with the experimental values.展开更多
Experimental densities, viscosities and heat capacities atdifferent temperatures were presented over the entire range of molefraction for the binary mixture of p-xylene and acetic acid. Densityvalues were used in the ...Experimental densities, viscosities and heat capacities atdifferent temperatures were presented over the entire range of molefraction for the binary mixture of p-xylene and acetic acid. Densityvalues were used in the determination of excess molar volumes, V^E.At the same time, the excess viscosity and excess molar heatcapacities were calculated. The values of V^E, η~E and c^E_p werefitted to the Redlich-Kister equation. Good agreements were observed.The excess molar volumes are positive with a large maximum valuelocated in the central concentration range.展开更多
Viscosities and densities for 1-butyl-3-methylimidazolium hexafluorophosphate ([C4mim][PF6]) and N, N-dimethylformamide (DMF) binary mixtures have been measured at the temperature range from 293.15 K to 318.15 K. ...Viscosities and densities for 1-butyl-3-methylimidazolium hexafluorophosphate ([C4mim][PF6]) and N, N-dimethylformamide (DMF) binary mixtures have been measured at the temperature range from 293.15 K to 318.15 K. It is shown that the viscosities and densities decrease monotonously with temperature and the content of DMF. Various correlation methods including Arrhenius-like equation, Sedclon et al.'s equation, Redlich-Kister equation with four parameters, and other empirical equations were applied to evaluate these experimental data. A model based on an equation of state Ior estimating the viscosity of mixtures containing ionic liquids were proposed by coupling with the excess Gibbs free energy model of viscosity, which can synchronously calculate the viscosity and the molar volume. The results show that the model gives a deviation of 8.29% for the viscosity, and a deviation of 1.05% for the molar volume when only one temperature-independent adjustable parameter is adopted. The correlation accuracy is further improved when two parameters or one temperature-dependent parameter is used.展开更多
A new apparatus was designed with a thick-walled glass capillary, electric heater tube with red copper and heat preservation. The thick-walled glass capillary was used for its advantages of resistance to acid corrosio...A new apparatus was designed with a thick-walled glass capillary, electric heater tube with red copper and heat preservation. The thick-walled glass capillary was used for its advantages of resistance to acid corrosion and pressure, and ease of observation. The experimental densities over the entire range of mole fraction for the binary mixture of p-xylene+acetic acid and o-xylene+acetic acid were measured using the new apparatus at temperatures ranging from 313.15K to 473.15K and pressure ranging from 0.20 to 2,0 MPa. The density values were used in the determination of excess molar volumes, W. The Redlich-Kister equation was used to fit the excess molar volume values, and the coefficients and estimate ot the standard error values were presented. The experimental resuits prove that the density measurement apparatus is successful.展开更多
Molecular dynamics simulation with an all-atom force field has been carded out on the two binary sys- tems of [bmim][PF6]-CO2 and [bmim][NO3]-CO2 to study the transport properties, volume expansion and micro- structur...Molecular dynamics simulation with an all-atom force field has been carded out on the two binary sys- tems of [bmim][PF6]-CO2 and [bmim][NO3]-CO2 to study the transport properties, volume expansion and micro- structures. It was found that addition of CO2 in the liquid phase can greatly decrease the viscosity of ionic liquids (ILs) and increase their diffusion coefficient obviously. Furthermore, the volume expansion of ionic liquids was found to increase with the increase of the mole fraction of CO2 in the liquid phase but less than 35% for the two simulated systems, which had a significant difference with CO2 expanded organic solvents. The main reason was that there were some void spaces inter and intra the molecules of ionic liquids. Finally, site to site radial distribution functions and corresponding number integrals were investigated and it was found that the change of microstructures of ILs bv addition CO2 had a great influence on the orooerties of ILs.展开更多
This paper deals with a numerical analysis of the evaporation of a thin binary liquid film by forced convection inside a channel constituted by two plates.The first plate is externally insulated and wetted by a thin w...This paper deals with a numerical analysis of the evaporation of a thin binary liquid film by forced convection inside a channel constituted by two plates.The first plate is externally insulated and wetted by a thin water ethylene glycol film while the second is dry and isothermal.The first part is concerned with the effects of inlet ambiance conditions and the liquid concentration of ethylene glycol on the distribution of the velocity,temperature,concentrations profiles and the axial variation of the evaporation rate.The second part is focused on the inversion temperature point of the evaporation of binary liquid film.Results show that the inversion temperature phenomenon for the evaporation of binary liquid mixture is observed for high liquid concentration of ethylene glycol.The present results show that in the inlet temperature range considered here,the inversion temperature does not exit for the evaporation of pure ethylene glycol.展开更多
An accurate knowledge about phase behaviors of CH4, CO2 and their binary mixture is crucial in fields of natural gas liquefaction and refrigeration applications. In this work, two all-atom force fields of TraPPE-EH an...An accurate knowledge about phase behaviors of CH4, CO2 and their binary mixture is crucial in fields of natural gas liquefaction and refrigeration applications. In this work, two all-atom force fields of TraPPE-EH and EMP2 were used for the components CH4 and CO〉 respectively. Then the vapor-liquid equilibria (VLE) of CH4, CO2 and their binary system were calculated via the NVT- and NpT Gibbs Ensemble Monte Carlo Simulations. Meanwhile the traditional method using Equation of State (EoS) to correlate the VLE properties was also investigated. The EoSs considered in this work were three classic cubic RK, SRK, PR and another advanced molecular-based PC-SAFT equations. For pure components, both molecular simulations and the PC-SAFT EoS could obtain satisfactory predictions for all the saturated properties. However, the saturated liquid densities calculated by the cubic EoSs were not so good. It was also observed that the TraPPE-EH force field had a good representation for CH4 molecule, while the EMP2 force field was not enough accurate to represent CO2 molecules. For the mixture CH4 + CO2, SRK and PR showed the best predictions for the saturated pressure-component property, while good results were also obtained via molecular simulations and PC-SAFT EoS. It was suggested that special combining rules or binary interaction parameters were important to obtain enough accurate prediction of the mixed phase behavior. Compared with the cubic EoS, the PC-SAFT and molecular simulation method showed better adaptabilities for both the pure and mixture systems. Besides, the accurate molecular parameters used in the PC-SAFT and molecular simulations could bring about direct and deep understanding about the molecular characteristics.展开更多
The density, viscosity and conductivity of ionic liquids (ILs), 1-octyl-3-methylimidazolium tetrafluoroborate ([omim][BF4]), 1-octyl-3-methylimidazolium chloride ([omim][C1]), 1-hexyl-3-methylimidazolium tetrafl...The density, viscosity and conductivity of ionic liquids (ILs), 1-octyl-3-methylimidazolium tetrafluoroborate ([omim][BF4]), 1-octyl-3-methylimidazolium chloride ([omim][C1]), 1-hexyl-3-methylimidazolium tetrafluoroborate ([hmim] BF4]), 1-hexyl- 3-methylimidazolium chloride ([hmim][C1]), 1-hexyl-3-methylimidazolium hexafluorophosphate ([hmim][PF6]), and the [omim][BF4] + [omim][Cl], [hmim][BF4] + [hmim][C1], and [hmim][PF6] + [hmim][C1] binary mixtures were studied at dif- ferent temperatures. It was demonstrated that the densities of both the neat ILs and their mixtures varied linearly with temper- ature. The density sensitivity of a binary mixture is between those of the two components. The excess molar volumes (l/e) of [hmim][BF4] + [hmim][C1] and [hmim][PF6] + [hmim][C1] mixtures are positive in the whole composition range. For [omim][BF4] + [omim][C1], the VE is also positive in the [omirn][C1]-rich region, but is negative in the [omim][BF4]-rich re- gion. The viscosity or conductivity of a mixture is in the intermediate of those of the two neat ILs. For all the neat ILs and the binary mixtures studied, the order of conductivity is opposite to that of the viscosity. The Vogel-Tammann-Fulcher (VTF) equations can be used to fit the viscosity and conductivity of all the neat ILs and the binary mixtures. The neat ILs and their mixtures obey the Fractional Walden Rule very well, and the values of the Walden slopes are all smaller than unit, indicating obvious ion associations in the neat ILs and the binary mixtures.展开更多
文摘Density, ρ, ultrasonic speed, u, and viscosity, η, of binary mixtures of 2-methyl-2-propanol (2M2P) with acetonitrile (AN), propionitrile (PN) and butyronitrile (BN) including those of pure liquids are measured over the entire composition range at temperatures 298.15, 303.15 and 308.15 K. From these experimental data, the excess available volume, E a V , excess free volume, E f V , excess isothermal compressibility, E T β , excess thermal expansion coefficient, E α , and excess internal pressure, E i π , are calculated. The variation of these properties with composition and temperature are discussed in terms of molecular interactions between unlike molecules of the mixtures. It is found that the values of E a V , E f V , E T β and E α are positive and those of E i π are negative for all the mixtures at each temperature studied, indicating the presence of weak interactions between 2M2P and AN/PN/BN molecules. The variations of E a V , E f V , E T β , E α and E i π values with composition indicate that the interactions in these mixtures follow the order: AN<PN<BN, i.e., the 2M2P-nitrile interaction decreases with the increase of alkyl chain length in these nitrile molecules. In addition, the theoretical ultrasonic velocity is calculated using the scaled particle theory and compared with the experimental values.
基金Supported by China Petrochemical Corporation (No. 200049).
文摘Experimental densities, viscosities and heat capacities atdifferent temperatures were presented over the entire range of molefraction for the binary mixture of p-xylene and acetic acid. Densityvalues were used in the determination of excess molar volumes, V^E.At the same time, the excess viscosity and excess molar heatcapacities were calculated. The values of V^E, η~E and c^E_p werefitted to the Redlich-Kister equation. Good agreements were observed.The excess molar volumes are positive with a large maximum valuelocated in the central concentration range.
基金Supported by the National Natural Science Foundation of China (20476025, 20776040), Shanghai Municipal Science and Technology Commission of China (05DJ14002) and Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology of China (XLHX2007002).
文摘Viscosities and densities for 1-butyl-3-methylimidazolium hexafluorophosphate ([C4mim][PF6]) and N, N-dimethylformamide (DMF) binary mixtures have been measured at the temperature range from 293.15 K to 318.15 K. It is shown that the viscosities and densities decrease monotonously with temperature and the content of DMF. Various correlation methods including Arrhenius-like equation, Sedclon et al.'s equation, Redlich-Kister equation with four parameters, and other empirical equations were applied to evaluate these experimental data. A model based on an equation of state Ior estimating the viscosity of mixtures containing ionic liquids were proposed by coupling with the excess Gibbs free energy model of viscosity, which can synchronously calculate the viscosity and the molar volume. The results show that the model gives a deviation of 8.29% for the viscosity, and a deviation of 1.05% for the molar volume when only one temperature-independent adjustable parameter is adopted. The correlation accuracy is further improved when two parameters or one temperature-dependent parameter is used.
基金Supported by China Petrochemical Corporation(X505012)
文摘A new apparatus was designed with a thick-walled glass capillary, electric heater tube with red copper and heat preservation. The thick-walled glass capillary was used for its advantages of resistance to acid corrosion and pressure, and ease of observation. The experimental densities over the entire range of mole fraction for the binary mixture of p-xylene+acetic acid and o-xylene+acetic acid were measured using the new apparatus at temperatures ranging from 313.15K to 473.15K and pressure ranging from 0.20 to 2,0 MPa. The density values were used in the determination of excess molar volumes, W. The Redlich-Kister equation was used to fit the excess molar volume values, and the coefficients and estimate ot the standard error values were presented. The experimental resuits prove that the density measurement apparatus is successful.
基金Supported by the National Natural Science Foundation of China(20976026,20976028)the Natural Science Foundation of Liaoning Province(20102030,20031072)
文摘Molecular dynamics simulation with an all-atom force field has been carded out on the two binary sys- tems of [bmim][PF6]-CO2 and [bmim][NO3]-CO2 to study the transport properties, volume expansion and micro- structures. It was found that addition of CO2 in the liquid phase can greatly decrease the viscosity of ionic liquids (ILs) and increase their diffusion coefficient obviously. Furthermore, the volume expansion of ionic liquids was found to increase with the increase of the mole fraction of CO2 in the liquid phase but less than 35% for the two simulated systems, which had a significant difference with CO2 expanded organic solvents. The main reason was that there were some void spaces inter and intra the molecules of ionic liquids. Finally, site to site radial distribution functions and corresponding number integrals were investigated and it was found that the change of microstructures of ILs bv addition CO2 had a great influence on the orooerties of ILs.
文摘This paper deals with a numerical analysis of the evaporation of a thin binary liquid film by forced convection inside a channel constituted by two plates.The first plate is externally insulated and wetted by a thin water ethylene glycol film while the second is dry and isothermal.The first part is concerned with the effects of inlet ambiance conditions and the liquid concentration of ethylene glycol on the distribution of the velocity,temperature,concentrations profiles and the axial variation of the evaporation rate.The second part is focused on the inversion temperature point of the evaporation of binary liquid film.Results show that the inversion temperature phenomenon for the evaporation of binary liquid mixture is observed for high liquid concentration of ethylene glycol.The present results show that in the inlet temperature range considered here,the inversion temperature does not exit for the evaporation of pure ethylene glycol.
基金The National Natural Science Foundation of China(Grant No.51376188)The National Basic Research Program of China("973"Project)(Grant No.2011CB710701)
文摘An accurate knowledge about phase behaviors of CH4, CO2 and their binary mixture is crucial in fields of natural gas liquefaction and refrigeration applications. In this work, two all-atom force fields of TraPPE-EH and EMP2 were used for the components CH4 and CO〉 respectively. Then the vapor-liquid equilibria (VLE) of CH4, CO2 and their binary system were calculated via the NVT- and NpT Gibbs Ensemble Monte Carlo Simulations. Meanwhile the traditional method using Equation of State (EoS) to correlate the VLE properties was also investigated. The EoSs considered in this work were three classic cubic RK, SRK, PR and another advanced molecular-based PC-SAFT equations. For pure components, both molecular simulations and the PC-SAFT EoS could obtain satisfactory predictions for all the saturated properties. However, the saturated liquid densities calculated by the cubic EoSs were not so good. It was also observed that the TraPPE-EH force field had a good representation for CH4 molecule, while the EMP2 force field was not enough accurate to represent CO2 molecules. For the mixture CH4 + CO2, SRK and PR showed the best predictions for the saturated pressure-component property, while good results were also obtained via molecular simulations and PC-SAFT EoS. It was suggested that special combining rules or binary interaction parameters were important to obtain enough accurate prediction of the mixed phase behavior. Compared with the cubic EoS, the PC-SAFT and molecular simulation method showed better adaptabilities for both the pure and mixture systems. Besides, the accurate molecular parameters used in the PC-SAFT and molecular simulations could bring about direct and deep understanding about the molecular characteristics.
基金supported by the National Natural Science Foundation of China (21133009, 21073207, 20903109)
文摘The density, viscosity and conductivity of ionic liquids (ILs), 1-octyl-3-methylimidazolium tetrafluoroborate ([omim][BF4]), 1-octyl-3-methylimidazolium chloride ([omim][C1]), 1-hexyl-3-methylimidazolium tetrafluoroborate ([hmim] BF4]), 1-hexyl- 3-methylimidazolium chloride ([hmim][C1]), 1-hexyl-3-methylimidazolium hexafluorophosphate ([hmim][PF6]), and the [omim][BF4] + [omim][Cl], [hmim][BF4] + [hmim][C1], and [hmim][PF6] + [hmim][C1] binary mixtures were studied at dif- ferent temperatures. It was demonstrated that the densities of both the neat ILs and their mixtures varied linearly with temper- ature. The density sensitivity of a binary mixture is between those of the two components. The excess molar volumes (l/e) of [hmim][BF4] + [hmim][C1] and [hmim][PF6] + [hmim][C1] mixtures are positive in the whole composition range. For [omim][BF4] + [omim][C1], the VE is also positive in the [omirn][C1]-rich region, but is negative in the [omim][BF4]-rich re- gion. The viscosity or conductivity of a mixture is in the intermediate of those of the two neat ILs. For all the neat ILs and the binary mixtures studied, the order of conductivity is opposite to that of the viscosity. The Vogel-Tammann-Fulcher (VTF) equations can be used to fit the viscosity and conductivity of all the neat ILs and the binary mixtures. The neat ILs and their mixtures obey the Fractional Walden Rule very well, and the values of the Walden slopes are all smaller than unit, indicating obvious ion associations in the neat ILs and the binary mixtures.