To investigate the configuration consideration of expander in transcritical carbon dioxide two-stage compression cycle, the best place in the cycle should be searched for to reinvest the recovery work so as to improve...To investigate the configuration consideration of expander in transcritical carbon dioxide two-stage compression cycle, the best place in the cycle should be searched for to reinvest the recovery work so as to improve the system efficiency. The expander and the compressor are connected to the same shaft and integrated into one unit, with the latter being driven by the former, thus the transfer loss and leakage loss can be decreased greatly. In these systems, the expander can be either connected with the first stage compressor (shortened as DCDL cycle) or the second stage compressor (shortened as DCDH cycle), but the two configuration ways can get different performances. By setting up theoretical model for two kinds of expander configuration ways in the transcritical carbon dioxide two-stage compression cycle, the first and the second laws of thermodynamics are used to analyze the coefficient of performance, exergy efficiency, inter-stage pressure, discharge temperature and exergy losses of each component for the two cycles. From the model results, the performance of DCDH cycle is better than that of DCDL cycle. The analysis results are indispensable to providing a theoretical basis for practical design and operating.展开更多
According to the previous experimental works on the low solidity circular cascade diffuser (LSD), a pressure recovery of a centrifugal blower was improved by the LSD significantly in a wide range of flow rate, and the...According to the previous experimental works on the low solidity circular cascade diffuser (LSD), a pressure recovery of a centrifugal blower was improved by the LSD significantly in a wide range of flow rate, and the pres-sure recovery was improved further by the LSD with a tandem cascade in comparison with the LSD with a sin-gle-row cascade. In the present study, the flow behavior in the LSD with the tandem cascade has been analyzed numerically by using the commercial CFD code of ANSYS-CFX12. It was shown clearly that the higher pressure recovery was achieved by applying the LSD with the tandem cascade, and the high pressure recovery is based on the high pressure rise in the vaneless space upstream of the LSD and the high blade loading of the front blade of the LSD. The high pressure recovery in the LSD could be achieved by controlling the flow separation on the suc-tion surface of the front blade and also on that of the rear blade due to formation of the favorable secondary flow and due to increase in mass flow passing through the slit section between the front and rear blades.展开更多
Analytical solutions are obtained for steady flow of an incompressible second grade fluid in an axisymmetric channel of varying width. Three approximate methods are used depending upon three different geometrical conf...Analytical solutions are obtained for steady flow of an incompressible second grade fluid in an axisymmetric channel of varying width. Three approximate methods are used depending upon three different geometrical configuration. The results obtained are applied to study the flow of a second grade fluid through a smooth constriction. To understand the flow behavior near stenosis, resistance to the flow, shear stress at the wall and stress at the stenosis throat are calculated. The results obtained are numerically evaluated for different values of dimensionless non-Newtonian parameters λ1 and λ2 and maximum height of the stenosis δm. It is observed that as we increase the value of these parameters the resistance to the flow, wall shear stress and stress at the stenosis throat increase.展开更多
文摘To investigate the configuration consideration of expander in transcritical carbon dioxide two-stage compression cycle, the best place in the cycle should be searched for to reinvest the recovery work so as to improve the system efficiency. The expander and the compressor are connected to the same shaft and integrated into one unit, with the latter being driven by the former, thus the transfer loss and leakage loss can be decreased greatly. In these systems, the expander can be either connected with the first stage compressor (shortened as DCDL cycle) or the second stage compressor (shortened as DCDH cycle), but the two configuration ways can get different performances. By setting up theoretical model for two kinds of expander configuration ways in the transcritical carbon dioxide two-stage compression cycle, the first and the second laws of thermodynamics are used to analyze the coefficient of performance, exergy efficiency, inter-stage pressure, discharge temperature and exergy losses of each component for the two cycles. From the model results, the performance of DCDH cycle is better than that of DCDL cycle. The analysis results are indispensable to providing a theoretical basis for practical design and operating.
文摘According to the previous experimental works on the low solidity circular cascade diffuser (LSD), a pressure recovery of a centrifugal blower was improved by the LSD significantly in a wide range of flow rate, and the pres-sure recovery was improved further by the LSD with a tandem cascade in comparison with the LSD with a sin-gle-row cascade. In the present study, the flow behavior in the LSD with the tandem cascade has been analyzed numerically by using the commercial CFD code of ANSYS-CFX12. It was shown clearly that the higher pressure recovery was achieved by applying the LSD with the tandem cascade, and the high pressure recovery is based on the high pressure rise in the vaneless space upstream of the LSD and the high blade loading of the front blade of the LSD. The high pressure recovery in the LSD could be achieved by controlling the flow separation on the suc-tion surface of the front blade and also on that of the rear blade due to formation of the favorable secondary flow and due to increase in mass flow passing through the slit section between the front and rear blades.
文摘Analytical solutions are obtained for steady flow of an incompressible second grade fluid in an axisymmetric channel of varying width. Three approximate methods are used depending upon three different geometrical configuration. The results obtained are applied to study the flow of a second grade fluid through a smooth constriction. To understand the flow behavior near stenosis, resistance to the flow, shear stress at the wall and stress at the stenosis throat are calculated. The results obtained are numerically evaluated for different values of dimensionless non-Newtonian parameters λ1 and λ2 and maximum height of the stenosis δm. It is observed that as we increase the value of these parameters the resistance to the flow, wall shear stress and stress at the stenosis throat increase.