可靠、准确的点云聚类是后续高精度场景目标分析与解译的基础.该文提出了一种基于上下文特征和图割算法的车载点云聚类方法.首先用DBSCAN(density-based spatial clustering of applications with noise)对点云数据进行过分割,得到密度...可靠、准确的点云聚类是后续高精度场景目标分析与解译的基础.该文提出了一种基于上下文特征和图割算法的车载点云聚类方法.首先用DBSCAN(density-based spatial clustering of applications with noise)对点云数据进行过分割,得到密度可达的超体素;然后引入空间和属性上下文特征来描述超体素间的关联,并用于定义超体素构建的图模型边的权值;最后基于多标记的图割优化算法得到最佳超体素聚簇.实验结果表明,该方法能够有效改善点云聚类过分割,从而提高聚类的精度.展开更多
针对室内人员检测环境毫米波雷达点云数据特性,并考虑多目标点云密集复杂情况,提出一种毫米波雷达点云的密度和划分联合聚类方法。毫米波雷达点云数据具有稀疏、均匀性差的特征。首先采用基于DBSCAN(Density-Based Spatial Clustering o...针对室内人员检测环境毫米波雷达点云数据特性,并考虑多目标点云密集复杂情况,提出一种毫米波雷达点云的密度和划分联合聚类方法。毫米波雷达点云数据具有稀疏、均匀性差的特征。首先采用基于DBSCAN(Density-Based Spatial Clustering of Applications with Noise)改进的参数自适应算法进行密度聚类,并对其存在的无限制密度扩张问题,通过决策树归类,对异常数据簇进行二次划分,保证了数据簇属性的单一性。试验结果表明,改进的密度聚类算法可自适应地寻找聚类过程中所需要的最佳参数并实现聚类,更适应毫米波雷达点云数据的特性,同时结合划分聚类对异常数据进行二次划分,使得聚类效果更加细腻和准确,实现了多目标密集情况下点云数据精准聚类划分的效果。展开更多
井下斜坡道的定位与建图是实现井下斜坡道无人驾驶的关键技术之一,矿山井下斜坡道区域为典型非结构化环境特征,且道路具有一定倾斜角度,采用传统SLAM算法无法获得精确里程计信息,导致定位与建图精度难以满足无人矿卡行驶需求。针对上述...井下斜坡道的定位与建图是实现井下斜坡道无人驾驶的关键技术之一,矿山井下斜坡道区域为典型非结构化环境特征,且道路具有一定倾斜角度,采用传统SLAM算法无法获得精确里程计信息,导致定位与建图精度难以满足无人矿卡行驶需求。针对上述问题,通过研究激光SLAM(Simultaneous Localization And Mapping)算法LeGO-LOAM,笔者提出一种适用于矿山井下斜坡道环境的定位与建图方法。首先,针对井下斜坡道口两侧均为光滑水泥墙壁,特征点稀少问题,设计了基于人工路标的辅助增强定位方法,有效增加点云特征数量,从而优化位姿估计结果,避免建图漂移现象;然后在特征预处理阶段,提出了一种基于激光点云高度差与坡度信息融合的提取地面点高效算法,通过改善地面地点的选取策略,针对倾斜坑洼路面仍能有效识别地面点,解决了井下斜坡道定位与建图倾斜角度大、误差大等问题;其次,基于CVC(Curved-Voxel Clustering)聚类算法设计了一种斜坡道点云曲率体素聚类算法,采用曲率体素和基于哈希的数据结构对点云进行分割,大幅提高在井下稀疏、噪声环境下点云聚类的鲁棒性;最后,运用Scan-To-Map进行点云匹配,同时兼顾点云配准的性能与速度。在中钢集团山东某井下斜坡道的现场实验证明:与原算法相比精度提升13.15%,Z轴误差降低22.3%,地图质量明显提升,能有效解决井下无人驾驶建图及定位的难题。展开更多
文摘可靠、准确的点云聚类是后续高精度场景目标分析与解译的基础.该文提出了一种基于上下文特征和图割算法的车载点云聚类方法.首先用DBSCAN(density-based spatial clustering of applications with noise)对点云数据进行过分割,得到密度可达的超体素;然后引入空间和属性上下文特征来描述超体素间的关联,并用于定义超体素构建的图模型边的权值;最后基于多标记的图割优化算法得到最佳超体素聚簇.实验结果表明,该方法能够有效改善点云聚类过分割,从而提高聚类的精度.
文摘针对室内人员检测环境毫米波雷达点云数据特性,并考虑多目标点云密集复杂情况,提出一种毫米波雷达点云的密度和划分联合聚类方法。毫米波雷达点云数据具有稀疏、均匀性差的特征。首先采用基于DBSCAN(Density-Based Spatial Clustering of Applications with Noise)改进的参数自适应算法进行密度聚类,并对其存在的无限制密度扩张问题,通过决策树归类,对异常数据簇进行二次划分,保证了数据簇属性的单一性。试验结果表明,改进的密度聚类算法可自适应地寻找聚类过程中所需要的最佳参数并实现聚类,更适应毫米波雷达点云数据的特性,同时结合划分聚类对异常数据进行二次划分,使得聚类效果更加细腻和准确,实现了多目标密集情况下点云数据精准聚类划分的效果。
文摘井下斜坡道的定位与建图是实现井下斜坡道无人驾驶的关键技术之一,矿山井下斜坡道区域为典型非结构化环境特征,且道路具有一定倾斜角度,采用传统SLAM算法无法获得精确里程计信息,导致定位与建图精度难以满足无人矿卡行驶需求。针对上述问题,通过研究激光SLAM(Simultaneous Localization And Mapping)算法LeGO-LOAM,笔者提出一种适用于矿山井下斜坡道环境的定位与建图方法。首先,针对井下斜坡道口两侧均为光滑水泥墙壁,特征点稀少问题,设计了基于人工路标的辅助增强定位方法,有效增加点云特征数量,从而优化位姿估计结果,避免建图漂移现象;然后在特征预处理阶段,提出了一种基于激光点云高度差与坡度信息融合的提取地面点高效算法,通过改善地面地点的选取策略,针对倾斜坑洼路面仍能有效识别地面点,解决了井下斜坡道定位与建图倾斜角度大、误差大等问题;其次,基于CVC(Curved-Voxel Clustering)聚类算法设计了一种斜坡道点云曲率体素聚类算法,采用曲率体素和基于哈希的数据结构对点云进行分割,大幅提高在井下稀疏、噪声环境下点云聚类的鲁棒性;最后,运用Scan-To-Map进行点云匹配,同时兼顾点云配准的性能与速度。在中钢集团山东某井下斜坡道的现场实验证明:与原算法相比精度提升13.15%,Z轴误差降低22.3%,地图质量明显提升,能有效解决井下无人驾驶建图及定位的难题。