期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于多尺度特征与互监督的拥挤行人检测
1
作者 肖振久 李思琦 曲海成 《计算机工程与科学》 CSCD 北大核心 2024年第7期1278-1285,共8页
针对拥挤场景中,行人漏检率高、准确率低的问题,提出一种基于多尺度特征与互监督的拥挤行人检测网络。为了有效提取复杂场景中的行人特征信息,用PANet金字塔网络与混合空洞卷积相结合的网络提取特征信息。然后,设计了一种行人头部-全身... 针对拥挤场景中,行人漏检率高、准确率低的问题,提出一种基于多尺度特征与互监督的拥挤行人检测网络。为了有效提取复杂场景中的行人特征信息,用PANet金字塔网络与混合空洞卷积相结合的网络提取特征信息。然后,设计了一种行人头部-全身互监督检测网络分别进行头部和全身检测,利用头部预测框和全身预测框的互监督获得更加准确的行人检测结果。所提出的网络在数据集CrowdHuman上取得了13.5%的MR^(-2)性能,相较于YOLOv5网络提升了3.6%,同时AP提升了3.5%;在CityPersons数据集上取得了48.2%的MR^(-2)性能,相较于YOLOv5网络提升了2.3%,同时AP提升了2.8%。实验结果表明,提出的网络在人群拥挤的密集场景中具有良好的检测效果。 展开更多
关键词 拥挤场景 行人检测 多尺度网络 互监督
下载PDF
特征挖掘与区域增强的弱监督时序动作定位
2
作者 王静 王传旭 《计算机应用研究》 CSCD 北大核心 2023年第8期2555-2560,共6页
弱监督时序动作定位旨在定位视频中行为实例的起止边界及识别相应的行为。现有方法尽管取得了很大进展,但依然存在动作定位不完整及短动作的漏检问题。为此,提出了特征挖掘与区域增强(FMRE)的定位方法。首先,通过基础分支计算视频片段... 弱监督时序动作定位旨在定位视频中行为实例的起止边界及识别相应的行为。现有方法尽管取得了很大进展,但依然存在动作定位不完整及短动作的漏检问题。为此,提出了特征挖掘与区域增强(FMRE)的定位方法。首先,通过基础分支计算视频片段之间的相似分数,并以此分数聚合上下文信息,得到更具有区别性的段分类分数,实现动作的完整定位;然后,添加增强分支,对基础分支定位中持续时间较短的动作提案沿时间维度进行动态上采样,进而采用多头自注意机制对动作提案间的时间结构显式建模,促进具有时间依赖关系的动作定位且防止短动作的漏检;最后,在两个分支之间构建伪标签互监督,逐步改进在训练过程中生成动作提案的质量。该算法在THUMOS14和ActivityNet1.3数据集上分别取得了70.3%和40.7%的检测性能,证明了所提算法的有效性。 展开更多
关键词 时序动作定位 逆变换 动态采样 伪标签互监督 多头自注意
下载PDF
攻坚阶段国企依法改制亟须强化审计监督 被引量:3
3
作者 刘大伦 《审计与经济研究》 北大核心 2005年第4期34-37,共4页
本文考察国有企业依法改制中审计监督的得失,探讨在国有企业依法改制攻坚阶段进一步加强审计监督的有效途径。
关键词 依法审计 国有企业改制 法规细化 审计查与外部监督 审计公示与职工参与
下载PDF
Research on internet traffic classification techniques using supervised machine learning 被引量:1
4
作者 李君 Zhang Shunyi +1 位作者 Wang Pan Li Cuilian 《High Technology Letters》 EI CAS 2009年第4期369-377,共9页
Interact traffic classification is vital to the areas of network operation and management. Traditional classification methods such as port mapping and payload analysis are becoming increasingly difficult as newly emer... Interact traffic classification is vital to the areas of network operation and management. Traditional classification methods such as port mapping and payload analysis are becoming increasingly difficult as newly emerged applications (e. g. Peer-to-Peer) using dynamic port numbers, masquerading techniques and encryption to avoid detection. This paper presents a machine learning (ML) based traffic classifica- tion scheme, which offers solutions to a variety of network activities and provides a platform of performance evaluation for the classifiers. The impact of dataset size, feature selection, number of application types and ML algorithm selection on classification performance is analyzed and demonstrated by the following experiments: (1) The genetic algorithm based feature selection can dramatically reduce the cost without diminishing classification accuracy. (2) The chosen ML algorithms can achieve high classification accuracy. Particularly, REPTree and C4.5 outperform the other ML algorithms when computational complexity and accuracy are both taken into account. (3) Larger dataset and fewer application types would result in better classification accuracy. Finally, early detection with only several initial packets is proposed for real-time network activity and it is proved to be feasible according to the preliminary results. 展开更多
关键词 supervised machine learning traffic classification feature selection genetic algorithm (GA)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部