推导出二维介质粗糙面与其上三维导体目标复合散射的耦合积分方程,提出目标散射的数值矩量法(Method of Moment,MoM)与粗糙面散射的基尔霍夫解析近似法(Kirchhoff Approximation,KA)相结合的混合迭代算法。理论推导表明:当目标距离粗糙...推导出二维介质粗糙面与其上三维导体目标复合散射的耦合积分方程,提出目标散射的数值矩量法(Method of Moment,MoM)与粗糙面散射的基尔霍夫解析近似法(Kirchhoff Approximation,KA)相结合的混合迭代算法。理论推导表明:当目标距离粗糙面的高度满足条件时,目标的离散单元在粗糙面上任意一点的散射场满足局部平面波关系,利用粗糙面局部面元的反射和透射关系,得出粗糙面感应场的KA解析计算式。由于粗糙表面的感应场用KA解析计算,只需对目标的感应电流进行一次数值积分,无需数值求解粗糙面的积分方程,节省大量的存储空间和运算时间,能在理论上十分简明、数值计算上十分有效地求解三维体目标与面目标组合的复合散射问题。讨论了目标与粗糙面相互作用的互耦迭代算法的有效性和收敛性。结合Monte-Carlo方法产生随机粗糙面样本,数值分析Gauss介质粗糙面上方的规则导体球或任意不规则六面体的散射,讨论了粗糙面的介电参数和目标几何形状等对双站散射的影响。展开更多
文摘推导出二维介质粗糙面与其上三维导体目标复合散射的耦合积分方程,提出目标散射的数值矩量法(Method of Moment,MoM)与粗糙面散射的基尔霍夫解析近似法(Kirchhoff Approximation,KA)相结合的混合迭代算法。理论推导表明:当目标距离粗糙面的高度满足条件时,目标的离散单元在粗糙面上任意一点的散射场满足局部平面波关系,利用粗糙面局部面元的反射和透射关系,得出粗糙面感应场的KA解析计算式。由于粗糙表面的感应场用KA解析计算,只需对目标的感应电流进行一次数值积分,无需数值求解粗糙面的积分方程,节省大量的存储空间和运算时间,能在理论上十分简明、数值计算上十分有效地求解三维体目标与面目标组合的复合散射问题。讨论了目标与粗糙面相互作用的互耦迭代算法的有效性和收敛性。结合Monte-Carlo方法产生随机粗糙面样本,数值分析Gauss介质粗糙面上方的规则导体球或任意不规则六面体的散射,讨论了粗糙面的介电参数和目标几何形状等对双站散射的影响。