期刊文献+
共找到513篇文章
< 1 2 26 >
每页显示 20 50 100
基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型
1
作者 唐非 《太阳能学报》 EI CAS CSCD 北大核心 2024年第7期735-744,共10页
针对风电场短期风速预测准确度不高的问题,提出一种基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型。首先,为突出短期风速的局部特征并降低建模难度,通过互补集成经验模态分解算法将短期风速分解为若干个稳定分量。然后... 针对风电场短期风速预测准确度不高的问题,提出一种基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型。首先,为突出短期风速的局部特征并降低建模难度,通过互补集成经验模态分解算法将短期风速分解为若干个稳定分量。然后,利用信息熵和近似熵来判定各分量的复杂度,高复杂度分量选择最小二乘支持向量机、低复杂度分量选择随机配置网络作为对应的预测模型。利用Stacking算法对每个模型的预测值进行融合,使预测精度得到提升。最后,通过一组实际的短期风速数据作为研究对象,将提出的预测模型应用于其预测。对比结果表明,所提预测模型可提高短期风速的预测精度。 展开更多
关键词 风能 短期风速 组合预测 互补集成经验模态分解 多模型 Stacking融合
原文传递
互补集成经验模态分解在MOA监测中的应用 被引量:3
2
作者 何贵先 行鸿彦 +1 位作者 徐伟 季鑫源 《高压电器》 CAS CSCD 北大核心 2018年第12期225-231,共7页
针对金属氧化物避雷器在线监测中提取持续电流信号含噪声的问题,提出了基于互补集成经验模态分解(CEEMDAN)的避雷器持续电流去噪方法。将含噪电流信号分解成一系列固有模态函数(IMF),对分解后的IMF进行自相关分析,选出有用信号和含噪分... 针对金属氧化物避雷器在线监测中提取持续电流信号含噪声的问题,提出了基于互补集成经验模态分解(CEEMDAN)的避雷器持续电流去噪方法。将含噪电流信号分解成一系列固有模态函数(IMF),对分解后的IMF进行自相关分析,选出有用信号和含噪分量,对含噪的IMF进行SG (savitzky-golay)滤波去噪,将滤波后的模态分量与剩余的分量进行重构得到消噪后的持续电流信号。MATLAB仿真结果表明:正常情况和老化情况下的MOA去噪后的持续电流均方根误差(正常:3.209 8×10-5,老化:0.002 5)比去噪前的(正常:2.450 9×10-4,老化:0.017 3)均降低了一个数量级,说明该方法有效消除了噪声对避雷器持续电流信号提取的影响,保证了MOA进一步监测分析的准确性。 展开更多
关键词 互补集成经验模态分解 金属氧化物避雷器 持续电流 自相关函数 SG滤波
下载PDF
基于改进互补集成经验模态分解的脉搏波去噪
3
作者 陈勇 姚知民 +3 位作者 刘焕淋 廖钧鹏 许力 冯彦清 《光学学报》 EI CAS CSCD 北大核心 2024年第7期51-60,共10页
针对脉搏波信号采集过程中存在噪声的问题,提出了基于改进互补集成经验模态分解的脉搏波去噪算法。利用光纤布拉格光栅传感器获取脉搏波信号,首先在互补集成经验模态分解算法中加入高斯白噪声,然后利用粒子群算法优化高斯白噪声幅值,以... 针对脉搏波信号采集过程中存在噪声的问题,提出了基于改进互补集成经验模态分解的脉搏波去噪算法。利用光纤布拉格光栅传感器获取脉搏波信号,首先在互补集成经验模态分解算法中加入高斯白噪声,然后利用粒子群算法优化高斯白噪声幅值,以此来消除互补集成经验模态算法分解产生的模态混叠现象,并联合小波阈值函数对其处理后的脉搏波信号进行重构。实验结果表明,所提算法能够有效降低脉搏波信号中的噪声干扰,在信噪比、均方误差两个指标上均优于对比算法,为提取脉搏波的时域特征奠定了基础。 展开更多
关键词 光纤布拉格光栅 脉搏波 信号去噪 互补集成经验模态分解 粒子群优化算法 小波阈值
原文传递
针对非平稳信号和高频噪声的自适应噪声完整集成经验模态分解-双向长短期记忆风功率预测模型
4
作者 万思洋 杨苹 +3 位作者 崔嘉雁 李丰能 隗知初 陈文皓 《电网技术》 北大核心 2025年第3期1176-1184,I0085,共10页
提出了一种基于改进的自适应噪声完整集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和双向长短期记忆神经网络(bidirectional long short-term memory,BiLSTM)的组合预测模型,以提高... 提出了一种基于改进的自适应噪声完整集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和双向长短期记忆神经网络(bidirectional long short-term memory,BiLSTM)的组合预测模型,以提高风电功率预测的准确性和鲁棒性。当前风电功率预测面临非平稳信号和高频噪声的问题,影响了预测的准确性。针对这一问题,通过CEEMDAN分解,将复杂的非平稳信号分解为多个固有模态函数分量(intrinsic mode function,IMF),在此基础上创新性地通过平均波动幅度(average fluctuation range,AFR)计算IMF的平均波动幅度进行高低频划分,应用经验小波变换(empirical wavelet transform,EWT)对高频分量进行滤波,显著降低信号中的高频噪声,提高数据准确性。随后,分别对高频和低频分量建立Bi-LSTM模型,选取最优参数进行训练和预测,将各分量的预测结果叠加得到最终的风电功率预测值。模型经过不同季节和数据集的验证,展示了其在风电功率预测中的通用性和鲁棒性。研究证明,结合CEEMDAN分解、AFR划分和EWT滤波,通过有效的噪声抑制和数据分解,能够显著提升风电功率预测的准确性和稳定性,弥补了传统方法在处理非平稳信号和高频噪声方面的不足。 展开更多
关键词 风电功率预测 双向长短期记忆神经网络 完全集成经验模态分解 经验小波变换 深度学习
原文传递
基于互补集合经验模态分解的相位敏感光时域反射计系统降噪方法
5
作者 岳新博 高旭 +2 位作者 高阳 王海涛 鲁秀娥 《红外与激光工程》 北大核心 2025年第2期134-148,共15页
为了提高相位敏感光时域反射计(Φ-OTDR)系统测量振动信号信噪比,提出了一种基于互补集合经验模态分解(CEEMD)的新型去噪方法。CEEMD算法对数字正交(I/Q)解调算法获取的瑞利后项散射光幅值信号和相位信号进行分解,经多尺度排列熵(MPE)... 为了提高相位敏感光时域反射计(Φ-OTDR)系统测量振动信号信噪比,提出了一种基于互补集合经验模态分解(CEEMD)的新型去噪方法。CEEMD算法对数字正交(I/Q)解调算法获取的瑞利后项散射光幅值信号和相位信号进行分解,经多尺度排列熵(MPE)算法筛选后,通过改进的小波阈值算法进行去噪,并设计采用多元宇宙优化(MVO)算法对参数进行优化。实际搭建了外差式Φ-OTDR系统,经仿真和实际测试验证文中算法有效性。最后,将设计算法与以往的经验模态分解-皮尔逊相关系数(EMD-PCC)、自适应噪声完备集合经验模态分解(CEEMDAN)及变分模态分解-改进小波阈值(VMD-NWT)去噪方法进行了对比。结果表明,在10.14 km的传感光纤位置上,该方法对于低频10 Hz、中频200 Hz以及高频1 200 Hz的振动事件,其位置信息信噪比分别可达8.88、30.26、11.90 dB,对不同频率段的振动信号均具备有效的去噪能力,且系统定位精度更高。该方法在提高系统信噪比的同时,成功地对振动信号进行了解调,且解调效果比其他三种算法效果更好,为Φ-OTDR系统降噪研究提供了新思路。 展开更多
关键词 相位敏感光时域反射仪 互补集合经验模态分解算法 多尺度排列熵 改进的小波阈值算法 多元宇宙优化算法
原文传递
基于互补集合经验模态分解和支持向量回归机的城市轨道交通线路轨距劣化预测
6
作者 贾清天 林海剑 金忠 《城市轨道交通研究》 北大核心 2025年第1期50-55,共6页
[目的]为了加强城市轨道交通区间线路质量的状态管理,需要对轨距在空间上的整体劣化趋势进行预测。[方法]引入CEEMD(互补集合经验模态)理论,提取轨道区间几何形位的IMF(本征模态函数),利用PSO(改进粒子群)算法优化SVR(支持向量回归机),... [目的]为了加强城市轨道交通区间线路质量的状态管理,需要对轨距在空间上的整体劣化趋势进行预测。[方法]引入CEEMD(互补集合经验模态)理论,提取轨道区间几何形位的IMF(本征模态函数),利用PSO(改进粒子群)算法优化SVR(支持向量回归机),对提取数据进行训练,标定预测模型最优参数后进行测试集验证,构建CEEMD-PSO-SVR预测模型。通过上海轨道交通16号线上行轨道区间K12+134—K15+743内的1128组轨检样本数据对预测模型进行了试验。[结果及结论]CEEMD-PSO-SVR预测模型同PSO-SVR模型、ARIMA(自回归移动平均模型)相比,在均方根误差、平均绝对误差、平均相对误差绝对值等3项性能评价指标上具有优势。 展开更多
关键词 城市轨道交通线路 轨距劣化 互补集合经验模态分解 支持向量回归机
下载PDF
基于互补型集成经验模态分解-模糊熵和回声状态网络的短期电力负荷预测 被引量:8
7
作者 李青 李军 马昊 《计算机应用》 CSCD 北大核心 2014年第12期3651-3655,3659,共6页
为了提高短期电力负荷预测的精度,提出一种噪声互补型集成经验模态分解(CEEMD)-模糊熵和泄漏积分型ESN(Li ESN)的组合预测方法。为降低对负荷序列进行局部分析的计算规模以及提高负荷预测的准确性,首先采用CEEMD-模糊熵将负荷时间序列... 为了提高短期电力负荷预测的精度,提出一种噪声互补型集成经验模态分解(CEEMD)-模糊熵和泄漏积分型ESN(Li ESN)的组合预测方法。为降低对负荷序列进行局部分析的计算规模以及提高负荷预测的准确性,首先采用CEEMD-模糊熵将负荷时间序列分解为具有明显复杂度差异的负荷子序列;然后,通过对各子序列进行特性分析,分别构建相应的子Li ESN预测模型;最后将各子序列的预测结果叠加得到最终预测值。将CEEMD-模糊熵结合Li ESN的组合预测方法应用于美国新英格兰地区短期电力负荷实例中,仿真结果表明,所提出的组合预测方法具有很高的预测精度。 展开更多
关键词 集成经验模态分解 回声状态网络 组合模型 负荷预测
下载PDF
一种添加部分自适应噪声的集成经验模态分解方法
8
作者 李昊 陈强 徐一雄 《南京理工大学学报》 CAS CSCD 北大核心 2024年第2期227-234,共8页
为了解决集成经验模态分解(EEMD)及其改进形式中普遍存在的噪声量和计算量需求大的问题,统计分析了白噪声内涵模态函数(IMF)的极值点和能量变化规律,总结出白噪声IMF极值点数随长度和阶数变化的经验公式。发现白噪声的高阶IMF不能有效... 为了解决集成经验模态分解(EEMD)及其改进形式中普遍存在的噪声量和计算量需求大的问题,统计分析了白噪声内涵模态函数(IMF)的极值点和能量变化规律,总结出白噪声IMF极值点数随长度和阶数变化的经验公式。发现白噪声的高阶IMF不能有效调整信号的极值点分布,提出添加部分自适应噪声的集成经验模态分解(EEMDPAN)。相比于自适应噪声完全集成经验模态分解(CEEMDAN),EEMDPAN有2点改进:不使用全部独立的自适应噪声,而使用成对相加为0的互补自适应噪声;不添加全部阶的自适应噪声,而是在中间的某一阶停止,而后使用经典EMD方法。对2个人工信号进行分解,实验证明,EEMDPAN很好地继承了EEMD抑制模态混叠的能力,相比于CEEMDAN,计算量降低至1/3,并且分解结果的低阶成分信号附加噪声更小,高阶成分信号可信度更高。 展开更多
关键词 自适应噪声 集成经验模态分解 白噪声 内涵模态函数 互补噪声 附加噪声 信号可信度
下载PDF
基于互补型集成经验模态分解和遗传最小二乘支持向量机的交通流量预测模型 被引量:15
9
作者 朱永强 王小凡 《科学技术与工程》 北大核心 2020年第17期7088-7092,共5页
交通流是智能交通系统中的关键组成部分,也是交通规划的重要依据。为了提高道路交通流量预测的精确性,提出一种基于互补型集成经验模态分解(complete ensemble empirical mode decomposition,CEEMD)后,采用遗传算法(genetic algorithm,... 交通流是智能交通系统中的关键组成部分,也是交通规划的重要依据。为了提高道路交通流量预测的精确性,提出一种基于互补型集成经验模态分解(complete ensemble empirical mode decomposition,CEEMD)后,采用遗传算法(genetic algorithm,GA)优化参数的最小二乘支持向量机(least square support vector machine,LSSVM)的交通流量预测模型。该模型使用互补型集成经验模态分解原始数据,将分解后的本征模态函数(intrinsic mode function,IMF)分量分别用遗传算法优化参数后的最小二乘支持向量机进行预测,叠加全部IMF分量值作为模型最终的预测结果。通过对美国加利福利亚州某高速公路一个月的交通流量数据进行训练预测,结果表明,该模型平均相对误差仅为6.51%,相较于其他模型拥有更好的预测效果,可为交通流的预测提供一定的参考。 展开更多
关键词 互补集成经验模态分解 遗传算法 最小二乘支持向量机 交通流预测
下载PDF
完全互补小波噪声辅助集总经验模态分解 被引量:19
10
作者 何刘 丁建明 +1 位作者 林建辉 刘新厂 《振动与冲击》 EI CSCD 北大核心 2017年第4期232-242,共11页
经验模态分解(EMD)是一种自适应非线性非平稳数据处理方法。噪声辅助的EMD方法能克服EMD方法在处理间歇信号时出现的"模态混叠"现象。在这些噪声辅助方法中,互补集总经验模态分解(CEEMD)和完全噪声辅助噪声集总经验模态分解(C... 经验模态分解(EMD)是一种自适应非线性非平稳数据处理方法。噪声辅助的EMD方法能克服EMD方法在处理间歇信号时出现的"模态混叠"现象。在这些噪声辅助方法中,互补集总经验模态分解(CEEMD)和完全噪声辅助噪声集总经验模态分解(CEEMDAN)恢复了EMD分解的完整性。在现有分析方法上提出了完全互补小波噪声辅助集总经验模态分解(CCWEEMDAN)算法。该算法能用更小的集总数、更少的迭代次数和极小的计算消耗获得更好的光谱分离效果和数目较少的筛选模态。 展开更多
关键词 经验模态分解 集合经验模态分解 噪声辅助 模态混叠 互补集总经验模态分解
下载PDF
集成经验模态分解中加入白噪声的自适应准则 被引量:25
11
作者 蔡艳平 李艾华 +2 位作者 徐斌 许平 何艳萍 《振动.测试与诊断》 EI CSCD 北大核心 2011年第6期709-714,811,共6页
现有集成经验模态分解(ensemble empirical mode decomposition,简称EEMD)算法中加入白噪声的大小与集成的次数都需要人为按照经验设定,缺乏可靠性。针对此问题,提出了自适应集成经验模态分解(adaptive ensemble empirical mode decompo... 现有集成经验模态分解(ensemble empirical mode decomposition,简称EEMD)算法中加入白噪声的大小与集成的次数都需要人为按照经验设定,缺乏可靠性。针对此问题,提出了自适应集成经验模态分解(adaptive ensemble empirical mode decomposition,简称AEEMD)算法,并给出了一种在EEMD方法中有效加入白噪声的可依据准则。首先,计算出输入信号的幅值标准差;然后,采用高通滤波方法对输入信号进行分解,通过计算高通滤波分解后的高频分量幅值标准差和输入信号幅值标准差来确定加入白噪声的幅值标准差,在此基础之上,EEMD集成次数根据期望的信号分解相对误差和加入白噪声的幅值标准差惟一确定;最后,为了进一步提高相邻模态函数的正交性,对AEEMD分解结果进行二次处理。仿真试验验证了AEEMD方法的抗混分解能力,将AEEMD方法应用于转子油膜涡动的故障监测诊断中,提取出转子油膜涡动的故障特征,并与基本EMD算法进行了对比,结果表明,AEEMD更加精确地提取了油膜涡动信号的故障特征。 展开更多
关键词 旋转机械 故障诊断 集成经验模态分解 模态混叠
下载PDF
基于集成经验模态分解和峭度准则的滚动轴承故障特征提取方法 被引量:202
12
作者 胡爱军 马万里 唐贵基 《中国电机工程学报》 EI CSCD 北大核心 2012年第11期106-111,153,共6页
为实现滚动轴承故障的精确诊断,提出一种基于集成经验模态分解(ensemble empirical mode decomposition,EEMD)与峭度准则的包络解调方法。该方法首先利用EEMD将振动信号分解,然后利用峭度最大准则选取EEMD分解后的本征模函数(intrinsic ... 为实现滚动轴承故障的精确诊断,提出一种基于集成经验模态分解(ensemble empirical mode decomposition,EEMD)与峭度准则的包络解调方法。该方法首先利用EEMD将振动信号分解,然后利用峭度最大准则选取EEMD分解后的本征模函数(intrinsic mode function,IMF),将该本征模函数进行包络解调从而获得滚动轴承的故障特征信息。该方法可以有效抑制经验模态分解(empirical mode decomposition,EMD)中的模态混叠问题,同时还避免了共振解调方法中中心频率及滤波频带的选取,具有良好的自适应性。利用该包络解调方法对实际滚动轴承发生内圈、外圈故障进行了分析,证明了该方法可以有效地提取滚动轴承故障特征信息,能够实现滚动轴承故障的精确诊断。 展开更多
关键词 集成经验模态分解 峭度 滚动轴承 包络解调 故障诊断
原文传递
一种结合互补集合经验模态分解和小波核极限学习机的短期电力负荷预测模型 被引量:6
13
作者 郭瑞 樊亚敏 潘玉民 《计算机应用与软件》 CSCD 2016年第12期243-247,263,共6页
电力系统的管理和调度对精确的负荷预测模型有着极高的要求。为全面提高负荷预测模型的性能,提出一种新型的结合互补集成经验模态分解(CEEMD)和小波核函数极限学习机(WKELM)的短期电力负荷组合预测模型。首先通过CEEMD将历史电力负荷数... 电力系统的管理和调度对精确的负荷预测模型有着极高的要求。为全面提高负荷预测模型的性能,提出一种新型的结合互补集成经验模态分解(CEEMD)和小波核函数极限学习机(WKELM)的短期电力负荷组合预测模型。首先通过CEEMD将历史电力负荷数据自适应地分解为一系列相对平稳的子序列,对各分量建立小波核极限学习机的预测模型,预测各分量的负荷值并对其进行求和得到最终预测结果。用四种预测模型对真实的负荷数据进行训练预测,算例表明新模型在预测精度和效率上都具有一定优势,同时克服了传统EMD中容易出现的模态混叠问题以及ELM中存在的过拟合等缺陷,具有一定的实际应用潜力。 展开更多
关键词 短期负荷预测 互补集成经验模态分解 小波核极限学习机 组合预测模型
下载PDF
自适应噪声均值优选集成经验模态分解及其在滚动轴承故障诊断中的应用 被引量:7
14
作者 童靳于 苏缪涎 +3 位作者 郑近德 潘海洋 潘紫微 包家汉 《电子测量与仪器学报》 CSCD 北大核心 2021年第2期41-49,共9页
为了提高自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)的分解能力和分解精度,解决CEEMDAN方法中噪声残留等问题,提出了一种改进的CEEMDAN方法——自适应噪声均值优选集... 为了提高自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)的分解能力和分解精度,解决CEEMDAN方法中噪声残留等问题,提出了一种改进的CEEMDAN方法——自适应噪声均值优选集成经验模态分解(mean-optimized ensemble empirical mode decomposition with adaptive noise, MEEMDAN)。MEEMDAN在迭代筛分过程中引入不同的权重,以正交性指标最小为依据,从不同权重下的分解结果中选取最优模态函数(IMF),确保了每一阶的IMF分量都是整体最优。通过仿真分析验证了MEEMDAN方法在分解能力和分解精度方面优于CEEMDAN方法。同时,将MEEMDAN和最大相关峭度反褶积相结合,并应用于滚动轴承仿真数据和实测数据分析,结果表明,与现有方法相比,所提方法能够更为准确地提取出故障特征频率,且在分解能力和抑制干扰频率方面更具有优越性。 展开更多
关键词 自适应噪声完整集成经验模态分解 经验模态分解 最大相关峭度反褶积 滚动轴承 故障诊断
原文传递
集成经验模态分解与深度学习的用户侧净负荷预测算法 被引量:38
15
作者 刘友波 吴浩 +3 位作者 刘挺坚 杨智宇 刘俊勇 李秋航 《电力系统自动化》 EI CSCD 北大核心 2021年第24期57-64,共8页
随着用户侧分布式能源发电容量增长,配电网净负荷需求预测面临着更大困难。为此,提出一种改进的自适应噪声的完全集成经验模态分解(CEEMDAN)和深度信念网络(DBN)结合的用户侧净负荷预测方法。首先,通过CEEMDAN将原始净负荷数据分解为若... 随着用户侧分布式能源发电容量增长,配电网净负荷需求预测面临着更大困难。为此,提出一种改进的自适应噪声的完全集成经验模态分解(CEEMDAN)和深度信念网络(DBN)结合的用户侧净负荷预测方法。首先,通过CEEMDAN将原始净负荷数据分解为若干个频率、幅值不一的本征模态函数(IMF)。然后,配合机器学习智能算法,使用DBN逐一对各个IMF分量进行特征提取和时序预测。最后,将多个目标预测结果累加得到最终用户侧短期净负荷预测结果。采用某地区实际数据进行算例分析,验证了所提CEEMDAN-DBN独立预测模型与直接预测相比,能够辨识各频率负荷分量特性,提高分布式能源与负荷耦合性增强背景下的负荷预测精度。 展开更多
关键词 净负荷预测 自适应噪声的完全集成经验模态分解 深度信念网络 时序预测
下载PDF
基于神经网络集成的B样条经验模态分解端点效应抑制方法 被引量:18
16
作者 孟宗 顾海燕 李姗姗 《机械工程学报》 EI CAS CSCD 北大核心 2013年第9期106-112,共7页
经验模态分解对非线性、非平稳信号进行平稳化处理时表现出特有的分析能力,能够有效获得非平稳信号的时频特征,但是其利用样条曲线构造信号上下包络线的过程中存在严重的端点效应。在分析端点效应产生机理的基础上,提出基于神经网络集成... 经验模态分解对非线性、非平稳信号进行平稳化处理时表现出特有的分析能力,能够有效获得非平稳信号的时频特征,但是其利用样条曲线构造信号上下包络线的过程中存在严重的端点效应。在分析端点效应产生机理的基础上,提出基于神经网络集成的B样条经验模态分解(B-spline empirical mode decomposition,BS-EMD)端点效应抑制方法,研究神经网络集成延拓的原理,利用神经网络集成对数据进行左延拓和右延拓,利用B样条插值函数对延拓后的数据进行插值计算,得到信号的均值曲线,进行经验模式分解,得到本征模函数。仿真和试验结果表明,该方法能有效抑制BS-EMD的端点效应。 展开更多
关键词 神经网络集成 B样条经验模态分解 端点效应 数据延拓
下载PDF
基于集成经验模态分解的高压直流输电线路行波故障测距 被引量:7
17
作者 杨立红 杨明玉 +1 位作者 彭志峰 杨雨昂 《华北电力大学学报(自然科学版)》 CAS 北大核心 2013年第6期33-39,共7页
直流输电线路两端的边界元件会造成行波波头畸变,且过渡电阻和线路色散等因素会进一步增加对波头到达母线时刻进行准确标定的难度。基于行波原理,采用集成经验模态分解(EEMD)算法分解出行波高频分量从而获取测距所需的时间参数,提出一... 直流输电线路两端的边界元件会造成行波波头畸变,且过渡电阻和线路色散等因素会进一步增加对波头到达母线时刻进行准确标定的难度。基于行波原理,采用集成经验模态分解(EEMD)算法分解出行波高频分量从而获取测距所需的时间参数,提出一种高压直流输电线路新型故障测距算法。该算法无需识别行波波头和计算行波波速,不受输电线路弧垂的影响,具有较高的测距精度和可靠性。通过PSCAD和MATLAB联合仿真,结果表明,该测距算法准确可靠,具有较强的鲁棒性。 展开更多
关键词 故障测距 行波 波速 集成经验模态分解 高压直流
下载PDF
基于互补集合经验模态分解和长短期记忆神经网络的短期电力负荷预测 被引量:51
18
作者 赵会茹 赵一航 郭森 《中国电力》 CSCD 北大核心 2020年第6期48-55,共8页
随着电力行业的不断发展,负荷预测的重要性也不断彰显,作为负荷预测的重要组成部分,短期负荷预测对于电力系统的调度运行、市场交易都有着重要的意义,精确的负荷预测有助于提高发电设备的利用率和经济调度的有效性。由于影响负荷数据的... 随着电力行业的不断发展,负荷预测的重要性也不断彰显,作为负荷预测的重要组成部分,短期负荷预测对于电力系统的调度运行、市场交易都有着重要的意义,精确的负荷预测有助于提高发电设备的利用率和经济调度的有效性。由于影响负荷数据的随机因素太多且具有较强非线性的特点,提出一种基于互补集合经验模态分解和长短期记忆神经网络的短期电力负荷预测方法。通过对某市负荷数据进行仿真,将仿真结果与其他传统预测方法结果相对比,最终证明长短期记忆神经网络模型的误差更低,具有较高的预测精度。同时将互补集合经验模态分解下的长短期记忆神经网络方法与其他分解方法下的长短期记忆神经网络模型预测结果进行对比,验证互补集合经验模态分解方法对提升预测精度的有效性。 展开更多
关键词 短期电力负荷预测 长短期记忆网络 互补集合经验模态分解 深度学习
下载PDF
基于集成经验模态分解的海杂波去噪 被引量:17
19
作者 行鸿彦 朱清清 《电子学报》 EI CAS CSCD 北大核心 2016年第1期1-7,共7页
针对实际海杂波信号非线性非平稳的特点,提出基于集成经验模态分解(EEMD)的海杂波去噪方法.利用EEMD将含有目标信号的海杂波数据分解成一系列从高频到低频的固有模态函数(IMF),通过各个IMF的自相关,分选出有用信号和噪声分量,对噪声占... 针对实际海杂波信号非线性非平稳的特点,提出基于集成经验模态分解(EEMD)的海杂波去噪方法.利用EEMD将含有目标信号的海杂波数据分解成一系列从高频到低频的固有模态函数(IMF),通过各个IMF的自相关,分选出有用信号和噪声分量,对噪声占主导作用的IMF选用Savitzky Golay(SG)滤波方法进行消噪,将滤波后的模态分量和剩余的分量进行重构得到削噪后的信号.结合最小二乘支持向量机(LSSVM)建立混沌序列的单步预测模型,从预测误差中检测淹没在海杂波背景中的微弱信号,比较去噪前和去噪后的均方根误差,利用均方根误差评价去噪效果.实验结果表明,EEMD算法对海杂波数据去噪是有效的,去噪后所得的均方根误差0.0028比去噪前所得的均方根误差0.0119降低了一个数量级. 展开更多
关键词 海杂波 集成经验模态分解 自相关函数 Savitzky Golay滤波
下载PDF
基于集成经验模态分解和极端梯度提升的雷电预警方法 被引量:21
20
作者 徐伟 夏志祥 行鸿彦 《仪器仪表学报》 EI CAS CSCD 北大核心 2020年第8期235-243,共9页
地面大气电场的观测和研究对减少雷电灾害、保障航空航天活动具有重要的意义。传统雷电预警方法忽略了大气电场信号的振荡尺度特性导致检测概率低。从大气电场信号的非线性非平稳特征出发,提出一种基于集成经验模态分解(EEMD)和极端梯... 地面大气电场的观测和研究对减少雷电灾害、保障航空航天活动具有重要的意义。传统雷电预警方法忽略了大气电场信号的振荡尺度特性导致检测概率低。从大气电场信号的非线性非平稳特征出发,提出一种基于集成经验模态分解(EEMD)和极端梯度提升(XGBoost)的雷电预警方法。该方法采用EEMD分解大气电场仪观测的电场信号,计算原始数据和各固有模态函数的样本熵,按随机分量、细节分量、趋势分量进行分类重构,分别提取重构分量的统计和自编码器特征,采用XGBoost算法建立雷电预警模型,并对各分量的分类器进行融合。利用大气电场仪和闪电定位系统观测数据进行了实验研究,分析了算法的性能,相对于普通投票决策方法,检测概率最高提高了4.8%,且虚警率降低5.2%~6.4%。 展开更多
关键词 大气电场 集成经验模态分解 极端梯度提升 检测概率 虚警率
原文传递
上一页 1 2 26 下一页 到第
使用帮助 返回顶部