期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
物理信息神经网络求解五阶emKdV方程的正反问题
1
作者 吴泽康 王晓丽 +1 位作者 韩文静 李金红 《数学物理学报(A辑)》 CSCD 北大核心 2024年第2期484-499,共16页
该文利用物理信息神经网络(PINNs)对扩展的五阶mKdV(emKdV)方程的正反问题进行求解,并对孤子的动力学行为进行分析、模拟.针对正问题,选用双曲正切函数tanh作为激活函数求解方程的一、二、三孤子解,并将PINNs方法求得的数据驱动解与借... 该文利用物理信息神经网络(PINNs)对扩展的五阶mKdV(emKdV)方程的正反问题进行求解,并对孤子的动力学行为进行分析、模拟.针对正问题,选用双曲正切函数tanh作为激活函数求解方程的一、二、三孤子解,并将PINNs方法求得的数据驱动解与借助简化的Hirota方法给出的方程精确解进行比较,一孤子解的精度为O(10^(-4)),二、三孤子解的精度为O(10^(-3)).针对反问题,分别由一、二、三孤子解的数据进行驱动求解方程的两个待定系数,并在不同的噪声下探究算法的鲁棒性.当在训练数据中加入1%的初始噪声或观测噪声时,待求系数的预测精度可分别达到O(10^(-3))和O(10^(-2));当加入3%的初始噪声或观测噪声时,预测精度依然可以达到O(10^(-2));由实验数据分析可知观测噪声对PINNs模型的影响要略大于初始噪声. 展开更多
关键词 物理信息神经网络 五阶emkdv方程 数据驱动解 非线性动力学
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部