期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
子图匹配和强化学习增强的三维点云配准
1
作者 张义 董华 +2 位作者 吴巧云 易程 汪俊 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2024年第1期81-91,共11页
针对低质量三维点云数据配准精度不足、效率低的问题,为了实现低质量点云的精确、快速配准,提出一种基于子图匹配和强化学习的点云配准方法.首先将三维点云配准转化为一系列离散的刚性变换连续作用结果,利用强化学习策略训练一个端到端... 针对低质量三维点云数据配准精度不足、效率低的问题,为了实现低质量点云的精确、快速配准,提出一种基于子图匹配和强化学习的点云配准方法.首先将三维点云配准转化为一系列离散的刚性变换连续作用结果,利用强化学习策略训练一个端到端的模型以迭代输出刚性变换动作;然后对于模型架构,采用双流主干网络分别提取源点云与目标点云的局部特征信息,设计交叉图注意力模块将源点云图和目标点云图中的相似节点关联起来,使用带选通向量的加权实现图节点的聚合,分别获取源点云图与目标点云图的全局特征表示;最后融合源点云图与目标点云图的全局特征,基于融合特征预测离散的刚性变换动作.强化学习策略的引入显著提高了点云配准算法的泛化性,在加入交叉图注意力模块后,点云配准的精度及效率也进一步被提升.在ModelNet40和ScanObjectNN这2个公共基准数据集上与最新的点云配准方法 ReAgent进行实验的结果表明,所提方法能够将旋转误差的均方差数值降低至少0.16,各向同性旋转误差数值也降低至少0.16,有效地提升低质量点云配准的精度. 展开更多
关键词 点云配准 强化学习 神经网络 匹配 交叉图注意力机制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部