Endohedral metallofullerene Gd@C2n were synthesized with high-yield using the carbon-arc discharge method of activating the Gd2O3-containing graphite anode in situ and back-burning technique. A series of Cd@C(2n) fo...Endohedral metallofullerene Gd@C2n were synthesized with high-yield using the carbon-arc discharge method of activating the Gd2O3-containing graphite anode in situ and back-burning technique. A series of Cd@C(2n) for 2n from 70 to 96 were effectively extracted by toluene at high-temperature and under high-pressure condition. Gd@C(82),Gd@C(74) were considered to be fairly stable and soluble metallofullerene species.展开更多
To improve the conventional electrokinetic remediation of Pb-contaminated soil,the Pb-contaminated soil near a lead acid battery factory in the Pearl River Delta region of China was electrokinetically remedied with po...To improve the conventional electrokinetic remediation of Pb-contaminated soil,the Pb-contaminated soil near a lead acid battery factory in the Pearl River Delta region of China was electrokinetically remedied with polarity exchange technique.The variations in Pb removal efficiency and the soil p H value with the treatment time and the exchange polarity interval were determined.It is found that the removal efficiency of Pb reaches a maximum of 87.7% when the voltage gradient is 1 V/cm and the exchange polarity interval is 48 h.This value is far higher than that obtained with conventional electrokinetic remediation(61.8%).Additionally,the "focusing effect" which appears in the conventional electrokinetic remediation can be avoided,and thus additional chemicals are not needed for the polarity exchange technique.The mechanism of Pb electromigration behavior in soil during the treatment with the polarity exchange technique was described.展开更多
A circuit configuration and a circuit topologic family of the novel forward mode AC/AC converters with high frequency link are presented. The circuit configuration is constituted of input cycloconverter, high frequenc...A circuit configuration and a circuit topologic family of the novel forward mode AC/AC converters with high frequency link are presented. The circuit configuration is constituted of input cycloconverter, high frequency transformer, output cycloconverter, input and output filters. The circuit topologic family includes eight circuit topologies, such as full-bridge-full-wave mode, etc. The bi-polarity phase-shifted control strategy and steady principles are thoroughly investigated. The output characteristics are obtained. By using the bi-polarity phase-shifted control strategy with phase-shifted control between the output cycloconveter and the input cycloconverter, commutation overlap period of the output cycloconverter, and polarity selection of the output filtering inductance current and the input voltage, the leakage inductance energy and the output filtering inductance current are naturally commutated, and surge voltage and surge current of the cycloconverters are overcome. The converters have such advantages as simple topology, two-stage power conversions(LFAC/HFAC/LFAC), bi-directional power flow, high frequency electrical isolation, good output waveforms, and strong ability to stabilize voltage. The converters lay key technical foundation on a new-type of regulated sinusoidal AC power supplies and electronic transformers. The correction and advancement of the converters are well verified by a principle test.展开更多
In view of the problems associated with large amount of discharged wastewater and serious pollution in the existing technology for removing sodium species from molecular sieves,this research work introduces the bipola...In view of the problems associated with large amount of discharged wastewater and serious pollution in the existing technology for removing sodium species from molecular sieves,this research work introduces the bipolar membrane electrodialysis into the process of removing sodium species from molecular sieves,and proposes a novel method of cleanly removing sodium from molecular sieves.The results show that the technology for removing sodium ions from the molecular sieves with an indirect electrodialysis process is feasible,and can recover Na OH solution.The bipolar membrane electrodialysis is especially suitable for treating the USY,ZSM-5 and Beta molecular sieves with high acid-resistance,and the physicochemical properties and catalytic performance of the prepared molecular sieves are roughly equivalent to those of the ammonium ion-exchange method.In comparison with the ammonium ion-exchange method,the process is clean and environmentally friendly,which consumes less water,and does not discharge wastewater to exhibit a rosy prospect of industrial application.展开更多
Nickel hexacyanoferrate (NiHCF) film was synthesized on porous three-dimensional carbon felt (PTCF) substrate by repetitious batch chemical depositions, and the NiHCF/PTCF electrode was used as electrochemically switc...Nickel hexacyanoferrate (NiHCF) film was synthesized on porous three-dimensional carbon felt (PTCF) substrate by repetitious batch chemical depositions, and the NiHCF/PTCF electrode was used as electrochemically switched ion exchange (ESIX) electrode in a packed bed for continuous separation for cesium ions. The morphologies of the prepared electrodes were characterized by scanning electron microscopy and the effects of solution concentration on the ion-exchange capacity of the electrodes were investigated by cyclic voltammetry technique. Cycling stability and long-term storage stability of NiHCF/PTCF electrodes were also studied. The NiHCF/PTCF electrodes with excellent ion-exchange ability were used to assemble a diaphragm-isolated ESIX reactor for cesium separation. Continuous separation of cesium and regeneration of NiHCF/PTCF electrode based on the diaphragm-isolated reactor were performed in a laboratory-scale two-electrode system.展开更多
The development status of the variable speed system of large power AC(alternating current)motor drive in China is introduced.The large power AC drive fed by AC-AC converters(cycloconverters)has developed greatly,and s...The development status of the variable speed system of large power AC(alternating current)motor drive in China is introduced.The large power AC drive fed by AC-AC converters(cycloconverters)has developed greatly,and some innovations on the theory and engineering technique have been realized.They have been applied to rolling mills,mine hoists,and so on,and remarkable economic and social benefit has been achieved.The development of AC drive fed by large power IGCT(integrated gate commutated thyristors)AC-DC-AC converter is also introduced.It has excellent performance and reliable operation,and has been used in traction.展开更多
Organic soft actuators are of special interest in many fields including intravascular neurosurgery. Ion conductive polymer film (ICPF) actuators have been one of the strong candidates. The ICPF investigated here was...Organic soft actuators are of special interest in many fields including intravascular neurosurgery. Ion conductive polymer film (ICPF) actuators have been one of the strong candidates. The ICPF investigated here was a cation-exchange membrane (Nation 117, Du Pont). When a voltage is given between the metal eIectrodes of an ICPF actuator, the ICPF actuator bends in the water due to the motion of Li+ cations with associated water. In order to increase the freedom of the deformation of the ICPF actuator, structures of independent electrode pairs were proposed. The electrodes were selectively deposited by non-electrokvzed plating including the Pt [(NH3)6]^4+ deposition process in a [Pt(NH3)6]Cl4 solution and the reduction process in a NaBH4 solution. Here, an elastomer adhesive tape with a fine electrode patterns was used performances were reported in detail. as a mask. The actuators processing conditions and their actuator展开更多
To improve the corrosion resistance of titanium(Ti)bipolar plate,titanium nitride(TiN)film was prepared on the surface of commercial TA1 pure titanium by magnetron reactive sputtering and pulse laser deposition(PLD)te...To improve the corrosion resistance of titanium(Ti)bipolar plate,titanium nitride(TiN)film was prepared on the surface of commercial TA1 pure titanium by magnetron reactive sputtering and pulse laser deposition(PLD)techniques,and the film prepared under different process parameters were evaluated.Results show that dense and complete TiN film can be obtained on TA1 surface under different preparation processes,and the corrosion current density of Ti substrate significantly increases.However,the composition of the film prepared by magnetron reactive sputtering is affected by the oxygen competition reaction,and its homogeneity is inferior to that of the film prepared by PLD.The comprehensive performance of the PLD-prepared film shows excellent characteristics in the terms of low corrosion current density(0.025μA·cm^(−2)),moderate corrosion overpotential(−0.106 V),and good hydrophobicity.展开更多
Currently, many organic materials are being considered as electrode materials and display good electrochemical behavior. However, the most critical issues related to the wide use of organic electrodes are their low th...Currently, many organic materials are being considered as electrode materials and display good electrochemical behavior. However, the most critical issues related to the wide use of organic electrodes are their low thermal stability and poor cycling performance due to their high solubility in electrolytes. Focusing on one of the most conventional carboxylate organic materials, namely lithium terephthalate Li2CsH4O4, we tackle these typical disadvantages via modifying its molecular structure by cation substitution. CaCsH4O4 and A12(C8H4O4)3 are prepared via a facile cation exchange reaction. Of these, CaCsH4O4 presents the best cycling performance with thermal stability up to 570℃ and capacity of 399 mA.h.g-1, without any capacity decay in the voltage window of 0.005-3.0 V. The molecular, crystal structure, and morphology of CaCsH4O4 are retained during cycling. This cation-substitution strategy brings new perspectives in the synthesis of new materials as well as broadening the applications of organic materials in Li/Na-ion batteries.展开更多
We classify completely three-generator finite p-groups G such that Ф(G)≤Z(G)and|G′|≤p2.This paper is a part of the classification of finite p-groups with a minimal non-abelian subgroup of index p,and solve partly ...We classify completely three-generator finite p-groups G such that Ф(G)≤Z(G)and|G′|≤p2.This paper is a part of the classification of finite p-groups with a minimal non-abelian subgroup of index p,and solve partly a problem proposed by Berkovich.展开更多
Improving the slow kinetics of alkaline hydrogen electrode reactions, involving hydrogen oxidation and evolution reactions(HOR/HER) is highly desirable for accelerating the commercialization of alkaline exchange membr...Improving the slow kinetics of alkaline hydrogen electrode reactions, involving hydrogen oxidation and evolution reactions(HOR/HER) is highly desirable for accelerating the commercialization of alkaline exchange membrane-based fuel cells(AEMFCs) and water electrolyzers(AEMWEs). However, fundamental understanding of the mechanism for HOR/HER catalysis under alkaline media is still debatable. Here we develop an amorphous tungsten oxide clusters modified iridium-tungsten nanocrystallines(Ir WOx)which exhibited by far the highest exchange current density and mass activity, about three times higher than the commercial Pt/C toward alkaline HOR/HER. Density functional theory(DFT) calculations reveal the WOxclusters act as a pivotal role to boost reversible hydrogen electrode reactions in alkaline condition but via different mechanisms, which are, hydrogen binding energy(HBE) mechanism for HOR and bifunctional mechanism for HER. This work is expected to promote our fundamental understanding about the alkaline HOR/HER catalysis and provide a new avenue for rational design of highly efficient electrocatalysts toward HOR/HER under alkaline electrolytes.展开更多
A thermal analysis of characteristic parameters in the electrode-region for tubular plasma generators is developed. Results of calculation on temperature of electrodes, evaporation rate and erosion rate for different ...A thermal analysis of characteristic parameters in the electrode-region for tubular plasma generators is developed. Results of calculation on temperature of electrodes, evaporation rate and erosion rate for different electrode materials are presented as a function of arc current, pressure of arc chamber, width of arc root and velocity of water coolant. Some experimental data on electrode erosion in a tubular plasma generator is given. The effects of operating parameters on erosion rate are discussed in detail.展开更多
Electrochemical ion exchange has been used to tailor the composition of transition metal oxides (Co3O4) electrode with enhanced capacity while maintaining its crystal structure and morphology. Specifically, Ni ions ...Electrochemical ion exchange has been used to tailor the composition of transition metal oxides (Co3O4) electrode with enhanced capacity while maintaining its crystal structure and morphology. Specifically, Ni ions were incorporated to C03O4 nanosheets sandwiched by nanoneedles to form Co3O4/NiCo2O4 composite. As positive electrode for supercapacitors, the Co3O4/NiCo2O4 composite presents a high areal capacitance of 3.2 F cm^-2 (1060 F g^-1) at a current density of 5 mA cm^-2 and outstanding rate capability as well as long cycle stability. Moreover, the assembled aqueous asymmetric supercapacitor based on Co3O4/NiCo2O4//carbon cloth electrodes delivers a considerable energy density of 3.0 mW hcm^-3 at power density of 136 mW cm^-3, and high rate capability (85% retention at a current density of 30 mA cm^-2). A safety light composed of ten green LEDs in parallel was lit for -360 s using two identical supercapacitors in series, indicating a promising practical application.展开更多
Copper selenide (CurSe) has great potential as counter electrode for quantum dots sensitized solar cell (QDSSC) due to its excellent electrocatalytic activity and lower charge transfer resistance. A novel ion exch...Copper selenide (CurSe) has great potential as counter electrode for quantum dots sensitized solar cell (QDSSC) due to its excellent electrocatalytic activity and lower charge transfer resistance. A novel ion exchange method has been utilized to fabricate Cu3Se2 nanosheets array counter electrode. CdS layer was first deposited by sputtering and used as a template to grow compact and uni- form Cu3Se2 film in a typical chemical bath. The morphology and thickness of the Cu3Se2 nanosheets were controlled by the deposition time. The final products (2h-Cu3Se2) showed significantly improved electrochemical catalytic activity and carrier transport property, leading to a much increased power conversion efficiency (4.01%) when compared with the CuS counter electrode CdS/CdSe QDSSC (3.21%).展开更多
Plasma-synthesized cobalt oxide supported on carbon has been analyzed for its use for electrocatalytic oxygen reduction reaction (ORR) in alkaline anion exchange membrane fuel cells (AEMFC). This work presents the...Plasma-synthesized cobalt oxide supported on carbon has been analyzed for its use for electrocatalytic oxygen reduction reaction (ORR) in alkaline anion exchange membrane fuel cells (AEMFC). This work presents the ORR activity in 0.1 mol L-1 KOH and 0.1 tool L-1 K2CO3 at 25 ℃. Cyclic voltammetry (CV) was used to determine the potentials at which the ORR occurs and to evaluate the stability of catalyst. Moreover, a rotating ring-disk electrode (RRDE) was used to investigate the activity of the catalysts and the formation of the by-product hydroperoxide anion (HO2-) as well as to identify the preferred pathway of the ORR. Calculated kinetic parameters for the ORR for the cobalt catalysts are shown in this work together with a comparison to a commercial platinum catalyst. However, the cobalt oxide produced more by-products which could lead to damage of the membrane in a fuel cell through a radical attack of the polymer backbone.展开更多
文摘Endohedral metallofullerene Gd@C2n were synthesized with high-yield using the carbon-arc discharge method of activating the Gd2O3-containing graphite anode in situ and back-burning technique. A series of Cd@C(2n) for 2n from 70 to 96 were effectively extracted by toluene at high-temperature and under high-pressure condition. Gd@C(82),Gd@C(74) were considered to be fairly stable and soluble metallofullerene species.
基金Project(21003054)supported by the National Natural Science Foundation of ChinaProject(2013CXZDA013)supported by the Scientific Research Foundation of the Education Department of Guangdong Province,China
文摘To improve the conventional electrokinetic remediation of Pb-contaminated soil,the Pb-contaminated soil near a lead acid battery factory in the Pearl River Delta region of China was electrokinetically remedied with polarity exchange technique.The variations in Pb removal efficiency and the soil p H value with the treatment time and the exchange polarity interval were determined.It is found that the removal efficiency of Pb reaches a maximum of 87.7% when the voltage gradient is 1 V/cm and the exchange polarity interval is 48 h.This value is far higher than that obtained with conventional electrokinetic remediation(61.8%).Additionally,the "focusing effect" which appears in the conventional electrokinetic remediation can be avoided,and thus additional chemicals are not needed for the polarity exchange technique.The mechanism of Pb electromigration behavior in soil during the treatment with the polarity exchange technique was described.
文摘A circuit configuration and a circuit topologic family of the novel forward mode AC/AC converters with high frequency link are presented. The circuit configuration is constituted of input cycloconverter, high frequency transformer, output cycloconverter, input and output filters. The circuit topologic family includes eight circuit topologies, such as full-bridge-full-wave mode, etc. The bi-polarity phase-shifted control strategy and steady principles are thoroughly investigated. The output characteristics are obtained. By using the bi-polarity phase-shifted control strategy with phase-shifted control between the output cycloconveter and the input cycloconverter, commutation overlap period of the output cycloconverter, and polarity selection of the output filtering inductance current and the input voltage, the leakage inductance energy and the output filtering inductance current are naturally commutated, and surge voltage and surge current of the cycloconverters are overcome. The converters have such advantages as simple topology, two-stage power conversions(LFAC/HFAC/LFAC), bi-directional power flow, high frequency electrical isolation, good output waveforms, and strong ability to stabilize voltage. The converters lay key technical foundation on a new-type of regulated sinusoidal AC power supplies and electronic transformers. The correction and advancement of the converters are well verified by a principle test.
基金financially supported by the National Basic Research Program of China(973 Program)under the Grant No.2015AA03A061
文摘In view of the problems associated with large amount of discharged wastewater and serious pollution in the existing technology for removing sodium species from molecular sieves,this research work introduces the bipolar membrane electrodialysis into the process of removing sodium species from molecular sieves,and proposes a novel method of cleanly removing sodium from molecular sieves.The results show that the technology for removing sodium ions from the molecular sieves with an indirect electrodialysis process is feasible,and can recover Na OH solution.The bipolar membrane electrodialysis is especially suitable for treating the USY,ZSM-5 and Beta molecular sieves with high acid-resistance,and the physicochemical properties and catalytic performance of the prepared molecular sieves are roughly equivalent to those of the ammonium ion-exchange method.In comparison with the ammonium ion-exchange method,the process is clean and environmentally friendly,which consumes less water,and does not discharge wastewater to exhibit a rosy prospect of industrial application.
基金Supported by the National Natural Science Foundation of China (21276173)the National Science Foundation of Shanxi Province (2012011020-5, 2012011006-1)the International Joint Research Project of Shanxi Province (2011081028)
文摘Nickel hexacyanoferrate (NiHCF) film was synthesized on porous three-dimensional carbon felt (PTCF) substrate by repetitious batch chemical depositions, and the NiHCF/PTCF electrode was used as electrochemically switched ion exchange (ESIX) electrode in a packed bed for continuous separation for cesium ions. The morphologies of the prepared electrodes were characterized by scanning electron microscopy and the effects of solution concentration on the ion-exchange capacity of the electrodes were investigated by cyclic voltammetry technique. Cycling stability and long-term storage stability of NiHCF/PTCF electrodes were also studied. The NiHCF/PTCF electrodes with excellent ion-exchange ability were used to assemble a diaphragm-isolated ESIX reactor for cesium separation. Continuous separation of cesium and regeneration of NiHCF/PTCF electrode based on the diaphragm-isolated reactor were performed in a laboratory-scale two-electrode system.
文摘The development status of the variable speed system of large power AC(alternating current)motor drive in China is introduced.The large power AC drive fed by AC-AC converters(cycloconverters)has developed greatly,and some innovations on the theory and engineering technique have been realized.They have been applied to rolling mills,mine hoists,and so on,and remarkable economic and social benefit has been achieved.The development of AC drive fed by large power IGCT(integrated gate commutated thyristors)AC-DC-AC converter is also introduced.It has excellent performance and reliable operation,and has been used in traction.
文摘Organic soft actuators are of special interest in many fields including intravascular neurosurgery. Ion conductive polymer film (ICPF) actuators have been one of the strong candidates. The ICPF investigated here was a cation-exchange membrane (Nation 117, Du Pont). When a voltage is given between the metal eIectrodes of an ICPF actuator, the ICPF actuator bends in the water due to the motion of Li+ cations with associated water. In order to increase the freedom of the deformation of the ICPF actuator, structures of independent electrode pairs were proposed. The electrodes were selectively deposited by non-electrokvzed plating including the Pt [(NH3)6]^4+ deposition process in a [Pt(NH3)6]Cl4 solution and the reduction process in a NaBH4 solution. Here, an elastomer adhesive tape with a fine electrode patterns was used performances were reported in detail. as a mask. The actuators processing conditions and their actuator
基金National Key Research and Development Program of China(2022YFB4002100)。
文摘To improve the corrosion resistance of titanium(Ti)bipolar plate,titanium nitride(TiN)film was prepared on the surface of commercial TA1 pure titanium by magnetron reactive sputtering and pulse laser deposition(PLD)techniques,and the film prepared under different process parameters were evaluated.Results show that dense and complete TiN film can be obtained on TA1 surface under different preparation processes,and the corrosion current density of Ti substrate significantly increases.However,the composition of the film prepared by magnetron reactive sputtering is affected by the oxygen competition reaction,and its homogeneity is inferior to that of the film prepared by PLD.The comprehensive performance of the PLD-prepared film shows excellent characteristics in the terms of low corrosion current density(0.025μA·cm^(−2)),moderate corrosion overpotential(−0.106 V),and good hydrophobicity.
文摘Currently, many organic materials are being considered as electrode materials and display good electrochemical behavior. However, the most critical issues related to the wide use of organic electrodes are their low thermal stability and poor cycling performance due to their high solubility in electrolytes. Focusing on one of the most conventional carboxylate organic materials, namely lithium terephthalate Li2CsH4O4, we tackle these typical disadvantages via modifying its molecular structure by cation substitution. CaCsH4O4 and A12(C8H4O4)3 are prepared via a facile cation exchange reaction. Of these, CaCsH4O4 presents the best cycling performance with thermal stability up to 570℃ and capacity of 399 mA.h.g-1, without any capacity decay in the voltage window of 0.005-3.0 V. The molecular, crystal structure, and morphology of CaCsH4O4 are retained during cycling. This cation-substitution strategy brings new perspectives in the synthesis of new materials as well as broadening the applications of organic materials in Li/Na-ion batteries.
基金supported by National Natural Science Foundation of China (Grant No. 11371232)Natural Science Foundation of Shanxi Province (Grant Nos. 2012011001-3 and 2013011001-1)
文摘We classify completely three-generator finite p-groups G such that Ф(G)≤Z(G)and|G′|≤p2.This paper is a part of the classification of finite p-groups with a minimal non-abelian subgroup of index p,and solve partly a problem proposed by Berkovich.
基金supported by the National Key Research and Development Program of China (2018YFB1502302)the National Natural Science Foundation of China (21972107, 21832004, and 21633008)+2 种基金the National Natural Science Foundation of Jiangsu Province (BK20191186)the Fundamental Research Funds for the Central UniversitiesLarge-scale Instrument and Equipment Sharing Foundation of Wuhan University。
文摘Improving the slow kinetics of alkaline hydrogen electrode reactions, involving hydrogen oxidation and evolution reactions(HOR/HER) is highly desirable for accelerating the commercialization of alkaline exchange membrane-based fuel cells(AEMFCs) and water electrolyzers(AEMWEs). However, fundamental understanding of the mechanism for HOR/HER catalysis under alkaline media is still debatable. Here we develop an amorphous tungsten oxide clusters modified iridium-tungsten nanocrystallines(Ir WOx)which exhibited by far the highest exchange current density and mass activity, about three times higher than the commercial Pt/C toward alkaline HOR/HER. Density functional theory(DFT) calculations reveal the WOxclusters act as a pivotal role to boost reversible hydrogen electrode reactions in alkaline condition but via different mechanisms, which are, hydrogen binding energy(HBE) mechanism for HOR and bifunctional mechanism for HER. This work is expected to promote our fundamental understanding about the alkaline HOR/HER catalysis and provide a new avenue for rational design of highly efficient electrocatalysts toward HOR/HER under alkaline electrolytes.
文摘A thermal analysis of characteristic parameters in the electrode-region for tubular plasma generators is developed. Results of calculation on temperature of electrodes, evaporation rate and erosion rate for different electrode materials are presented as a function of arc current, pressure of arc chamber, width of arc root and velocity of water coolant. Some experimental data on electrode erosion in a tubular plasma generator is given. The effects of operating parameters on erosion rate are discussed in detail.
基金supported by the National Natural Science Foundation of China (61376011)Gansu Provincial Natural Science Foundation of China (17JR5RA198)the Fundamental Research Funds for the Central Universities (lzujbky-2017-k21)
文摘Electrochemical ion exchange has been used to tailor the composition of transition metal oxides (Co3O4) electrode with enhanced capacity while maintaining its crystal structure and morphology. Specifically, Ni ions were incorporated to C03O4 nanosheets sandwiched by nanoneedles to form Co3O4/NiCo2O4 composite. As positive electrode for supercapacitors, the Co3O4/NiCo2O4 composite presents a high areal capacitance of 3.2 F cm^-2 (1060 F g^-1) at a current density of 5 mA cm^-2 and outstanding rate capability as well as long cycle stability. Moreover, the assembled aqueous asymmetric supercapacitor based on Co3O4/NiCo2O4//carbon cloth electrodes delivers a considerable energy density of 3.0 mW hcm^-3 at power density of 136 mW cm^-3, and high rate capability (85% retention at a current density of 30 mA cm^-2). A safety light composed of ten green LEDs in parallel was lit for -360 s using two identical supercapacitors in series, indicating a promising practical application.
基金supported by the National Natural Science Foundation of China (51374029 and 51611130063)Fundamental Research Funds for the Central Universities (FRF-BD-16-012A)111 Project (B17003)
文摘Copper selenide (CurSe) has great potential as counter electrode for quantum dots sensitized solar cell (QDSSC) due to its excellent electrocatalytic activity and lower charge transfer resistance. A novel ion exchange method has been utilized to fabricate Cu3Se2 nanosheets array counter electrode. CdS layer was first deposited by sputtering and used as a template to grow compact and uni- form Cu3Se2 film in a typical chemical bath. The morphology and thickness of the Cu3Se2 nanosheets were controlled by the deposition time. The final products (2h-Cu3Se2) showed significantly improved electrochemical catalytic activity and carrier transport property, leading to a much increased power conversion efficiency (4.01%) when compared with the CuS counter electrode CdS/CdSe QDSSC (3.21%).
文摘Plasma-synthesized cobalt oxide supported on carbon has been analyzed for its use for electrocatalytic oxygen reduction reaction (ORR) in alkaline anion exchange membrane fuel cells (AEMFC). This work presents the ORR activity in 0.1 mol L-1 KOH and 0.1 tool L-1 K2CO3 at 25 ℃. Cyclic voltammetry (CV) was used to determine the potentials at which the ORR occurs and to evaluate the stability of catalyst. Moreover, a rotating ring-disk electrode (RRDE) was used to investigate the activity of the catalysts and the formation of the by-product hydroperoxide anion (HO2-) as well as to identify the preferred pathway of the ORR. Calculated kinetic parameters for the ORR for the cobalt catalysts are shown in this work together with a comparison to a commercial platinum catalyst. However, the cobalt oxide produced more by-products which could lead to damage of the membrane in a fuel cell through a radical attack of the polymer backbone.