期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于Res2Net-IDCN-SCF算法的多模态医学图像融合
1
作者 程颖 方贤进 《湖北民族大学学报(自然科学版)》 CAS 2023年第4期499-505,共7页
利用多尺度特征策略进行特征提取的有效性不足是多模态医学图像融合领域存在的问题。为了增加融合结果的多尺结构信息,提出了一种基于残差多尺度网络(residual multi-scale network,Res2Net)、交错稠密网络和空间通道融合算法的多模态... 利用多尺度特征策略进行特征提取的有效性不足是多模态医学图像融合领域存在的问题。为了增加融合结果的多尺结构信息,提出了一种基于残差多尺度网络(residual multi-scale network,Res2Net)、交错稠密网络和空间通道融合算法的多模态医学图像融合算法。Res2Net的编码器在提取多尺度特征时能保留更多语义信息;交错稠密网络减少了解码器和编码器之间的语义差异,丰富了融合图像的结构和细节信息;掩码鉴别器约束了脑瘤病灶区域,进一步提高了融合图像的质量;特征图通过空间通道融合算法融合减少了多模态图像之间的信息冗余。该算法在信息熵(entropy of information,EN)、互信息(mutual information,MI)、结构相似性(structure similarity index measure,SSIM)、多尺度结构相似性(multi scale structural similarity index measure,MI_SSIM)指标上拥有较高水平的性能表现,EN提高了6%,MI提高了3%。结果显示,所提出的算法在视觉感知和指标评估上达到了较高的融合质量。 展开更多
关键词 多模态医学图像融合 Res2Net 交错稠密网络 空间融合 通道融合
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部