A novel method of extracting valuable metals from Ti-bearing blast furnace slag(TBBF slag)via pressure pyrolysis of recyclable ammonium sulfate(AS)−acid leaching process was proposed.The results show that when pressur...A novel method of extracting valuable metals from Ti-bearing blast furnace slag(TBBF slag)via pressure pyrolysis of recyclable ammonium sulfate(AS)−acid leaching process was proposed.The results show that when pressurized roasting at an AS-to-slag mass ratio 3:1 and 370℃for 90 min,the extraction rates of titanium,aluminum and magnesium reached 94.5%,91.9%and 97.4%,respectively.The acid leaching solution was subjected to re-crystallization in a boiling state to obtain a titanium product having a TiO2 content of 94.1%.The above crystallization mother liquor was adjusted to pH=6 and pH≥12.2,respectively,and then qualified Al2O3 and MgO products were obtained.The analysis through XRD and SEM−EDS proves that the main phases in roasted samples were NH4AlSO4,CaSO4 and TiOSO4.The thermodynamic analysis presents that the main minerals of perovskite,spinel and diopside in raw ore could spontaneously react with the intermediate produced by AS under optimal conditions.展开更多
Hydro-catalytic pyrolysis on Yunnan lignite were studied in a fixed bed to determine their effects on high-value raw materials, such as BTX, PCX and lower naphthalene, in liquid products. Ni and Mo were chosen as acti...Hydro-catalytic pyrolysis on Yunnan lignite were studied in a fixed bed to determine their effects on high-value raw materials, such as BTX, PCX and lower naphthalene, in liquid products. Ni and Mo were chosen as active pyrolysis centers through thermogravimetry, after which their catalytic effects were analyzed in a fixed bed. The results showed that different concentrations of impregnated Ni and Mo solution can significantly increase the yield of high-value products and enable catalyst separating and recycling with this method of online catalytic pyrolysis.展开更多
基金Project(DY135-B2-15)supported by China Ocean Mineral Resources R&D AssociationProject(2015ZX07205-003)supported by Major Science and Technology Program for Water Pollution Control and Treatment,ChinaProjects(21176242,21176026)supported by the National Natural Science Foundation of China。
文摘A novel method of extracting valuable metals from Ti-bearing blast furnace slag(TBBF slag)via pressure pyrolysis of recyclable ammonium sulfate(AS)−acid leaching process was proposed.The results show that when pressurized roasting at an AS-to-slag mass ratio 3:1 and 370℃for 90 min,the extraction rates of titanium,aluminum and magnesium reached 94.5%,91.9%and 97.4%,respectively.The acid leaching solution was subjected to re-crystallization in a boiling state to obtain a titanium product having a TiO2 content of 94.1%.The above crystallization mother liquor was adjusted to pH=6 and pH≥12.2,respectively,and then qualified Al2O3 and MgO products were obtained.The analysis through XRD and SEM−EDS proves that the main phases in roasted samples were NH4AlSO4,CaSO4 and TiOSO4.The thermodynamic analysis presents that the main minerals of perovskite,spinel and diopside in raw ore could spontaneously react with the intermediate produced by AS under optimal conditions.
文摘Hydro-catalytic pyrolysis on Yunnan lignite were studied in a fixed bed to determine their effects on high-value raw materials, such as BTX, PCX and lower naphthalene, in liquid products. Ni and Mo were chosen as active pyrolysis centers through thermogravimetry, after which their catalytic effects were analyzed in a fixed bed. The results showed that different concentrations of impregnated Ni and Mo solution can significantly increase the yield of high-value products and enable catalyst separating and recycling with this method of online catalytic pyrolysis.