随着分布式清洁能源发电技术的发展,传统电力用户逐渐转变为电能产消者,并可采用合作联盟形式参与电力P2P(peer to peer)交易,促进分布式清洁能源就地消纳。该文通过从源端和传输端分别核算碳减排量的方法,构建一类考虑经济效益和环境...随着分布式清洁能源发电技术的发展,传统电力用户逐渐转变为电能产消者,并可采用合作联盟形式参与电力P2P(peer to peer)交易,促进分布式清洁能源就地消纳。该文通过从源端和传输端分别核算碳减排量的方法,构建一类考虑经济效益和环境效益的社会福利函数,研究分布式电能产消者通过合作联盟形式实现社会福利最大化的途径。设计一种依据产消者对联盟社会福利贡献值分配合作剩余的机制,激励产消者合作的积极性以维持联盟的稳定。算例分析表明:相较于P2G(peer-to-grid)交易和非合作P2P交易,产消者以合作联盟方式参与电力P2P交易的社会福利分别提升了62.62%、33.79%。因此,以市场化的方式组建合作联盟参与电力P2P交易并合理分配利益,可挖掘分布式清洁能源就地消纳的潜力,促进能源消费的绿色低碳转型。展开更多
随着分布式能源的发展,传统用户具备发电能力而成为产消者(production and consumption users,PCU)的趋势愈演愈烈,该文主要研究了同一微能网下大量产消者的协同运行问题。电价不确定性和产消者响应给微能网协同不同利益主体的PCU之间...随着分布式能源的发展,传统用户具备发电能力而成为产消者(production and consumption users,PCU)的趋势愈演愈烈,该文主要研究了同一微能网下大量产消者的协同运行问题。电价不确定性和产消者响应给微能网协同不同利益主体的PCU之间的调度带来困难。在此背景下提出考虑产消者响应与电价不确定性的微能网与产消者混合博弈优化策略。首先,构建产消者响应模型和电价不确定性模型,引入效用函数来描述PCU的满意程度,采用鲁棒优化和机会约束方法描述电价的不确定性与新能源出力的不确定性。其次,构建混合博弈模型,即上层微能网运营商(integrated energy operator,IEO)与下层PCU之间的主从博弈模型和下层PCU联盟之间的合作博弈模型。上层IEO作为主从博弈的领导者以运行成本最小化为目标,通过为产消者制定电价、热价引导产消者的用能需求;下层产消者作为跟随者,以效益最大为目标通过合作方式对IEO的决策进行产消者响应。PCU之间的合作博弈以纳什议价的方式进行,将PCU模型等效为联盟收益最大化和合作分配两个子问题。基于KKT条件利用Big-M法和Mc Cormick包络法将双层问题转换为单层混合整数线性规划问题求解主从博弈,结合交替方向乘子法(alternating direction multiplier method,ADMM)求解下层合作博弈。结果表明,该文所提策略有效协调了微能网与PCU的调度并保证了PCU合作联盟的公平性。展开更多
在双碳目标的背景下,虚拟电厂、微电网等形式的产消者大规模涌现。多产消者之间的能量共享能够提升整体的经济效益与新能源消纳水平。在计及各产消者数据隐私的基础上,文中提出弱中心化模式下的多产消者能量共享协同运行机制。首先,构...在双碳目标的背景下,虚拟电厂、微电网等形式的产消者大规模涌现。多产消者之间的能量共享能够提升整体的经济效益与新能源消纳水平。在计及各产消者数据隐私的基础上,文中提出弱中心化模式下的多产消者能量共享协同运行机制。首先,构建含多种分布式资源的产消者内部调度模型,并考虑负荷需求以及新能源出力的波动性与随机性,基于条件风险价值(conditional value at risk,CVaR)量化不确定性带来的风险。然后,提出多产消者弱中心化电价迭代机制,利用供需关系引导电价更新。同时考虑到产消者隐私保护,基于Paillier同态加密算法和秘密共享原理设计电量数据聚合方法。该方法能够在各方主体隐私得到保护的前提下获取系统的供需信息。最后,通过算例验证了文中所提机制的有效性与合理性,且经过能量共享后多产消者整体成本降低12.6%。展开更多
文摘随着分布式清洁能源发电技术的发展,传统电力用户逐渐转变为电能产消者,并可采用合作联盟形式参与电力P2P(peer to peer)交易,促进分布式清洁能源就地消纳。该文通过从源端和传输端分别核算碳减排量的方法,构建一类考虑经济效益和环境效益的社会福利函数,研究分布式电能产消者通过合作联盟形式实现社会福利最大化的途径。设计一种依据产消者对联盟社会福利贡献值分配合作剩余的机制,激励产消者合作的积极性以维持联盟的稳定。算例分析表明:相较于P2G(peer-to-grid)交易和非合作P2P交易,产消者以合作联盟方式参与电力P2P交易的社会福利分别提升了62.62%、33.79%。因此,以市场化的方式组建合作联盟参与电力P2P交易并合理分配利益,可挖掘分布式清洁能源就地消纳的潜力,促进能源消费的绿色低碳转型。
文摘随着分布式能源的发展,传统用户具备发电能力而成为产消者(production and consumption users,PCU)的趋势愈演愈烈,该文主要研究了同一微能网下大量产消者的协同运行问题。电价不确定性和产消者响应给微能网协同不同利益主体的PCU之间的调度带来困难。在此背景下提出考虑产消者响应与电价不确定性的微能网与产消者混合博弈优化策略。首先,构建产消者响应模型和电价不确定性模型,引入效用函数来描述PCU的满意程度,采用鲁棒优化和机会约束方法描述电价的不确定性与新能源出力的不确定性。其次,构建混合博弈模型,即上层微能网运营商(integrated energy operator,IEO)与下层PCU之间的主从博弈模型和下层PCU联盟之间的合作博弈模型。上层IEO作为主从博弈的领导者以运行成本最小化为目标,通过为产消者制定电价、热价引导产消者的用能需求;下层产消者作为跟随者,以效益最大为目标通过合作方式对IEO的决策进行产消者响应。PCU之间的合作博弈以纳什议价的方式进行,将PCU模型等效为联盟收益最大化和合作分配两个子问题。基于KKT条件利用Big-M法和Mc Cormick包络法将双层问题转换为单层混合整数线性规划问题求解主从博弈,结合交替方向乘子法(alternating direction multiplier method,ADMM)求解下层合作博弈。结果表明,该文所提策略有效协调了微能网与PCU的调度并保证了PCU合作联盟的公平性。
文摘在双碳目标的背景下,虚拟电厂、微电网等形式的产消者大规模涌现。多产消者之间的能量共享能够提升整体的经济效益与新能源消纳水平。在计及各产消者数据隐私的基础上,文中提出弱中心化模式下的多产消者能量共享协同运行机制。首先,构建含多种分布式资源的产消者内部调度模型,并考虑负荷需求以及新能源出力的波动性与随机性,基于条件风险价值(conditional value at risk,CVaR)量化不确定性带来的风险。然后,提出多产消者弱中心化电价迭代机制,利用供需关系引导电价更新。同时考虑到产消者隐私保护,基于Paillier同态加密算法和秘密共享原理设计电量数据聚合方法。该方法能够在各方主体隐私得到保护的前提下获取系统的供需信息。最后,通过算例验证了文中所提机制的有效性与合理性,且经过能量共享后多产消者整体成本降低12.6%。