The Earth surface contains various oxic and anoxic environments. The later include natural wetlands,river and lake sediments, paddy field soils and landfills. In the last few decades, the biogeochemical cycle of carbo...The Earth surface contains various oxic and anoxic environments. The later include natural wetlands,river and lake sediments, paddy field soils and landfills. In the last few decades, the biogeochemical cycle of carbon in anoxic environments, which leads to the production and emission of methane, a potent greenhouse gas in the atmosphere, has drawn great attentions from both scientific and public sectors. New organisms and mechanisms involved in methanogenesis and carbon cycling have been uncovered. Interspecies electron transfer is considered as a crucial step in methanogenesis in anoxic environments.Electron-carrying mediators, like H_2 and formate, are known to play the key role in electron transfer. Recently, it has been found that in addition to the conventional electron transfer via chemical mediators, direct interspecies electron transfer(DIET) can occur. In this Review, we describe the ecology and biogeochemistry of methanogenesis and highlight the effect of microbe-mineral interaction on microbial syntrophy. Recent advances in the study of DIET may pave the way towards a mechanistic understanding of methanogenesis and the influence of microbe-mineral interaction on this process.展开更多
Global warming, as a result of an increase in the mean temperature of the planet, might lead to catastrophic events for humanity. This temperature increase is mainly the result of an increase in the atmospheric greenh...Global warming, as a result of an increase in the mean temperature of the planet, might lead to catastrophic events for humanity. This temperature increase is mainly the result of an increase in the atmospheric greenhouse gases (GHG) concentration. Water vapor, carbon dioxide (CO2), methane (CH4) and nitrous oxide (N20) are the most important GHG, and human activities, such as industry, livestock and agriculture, contribute to the production of these gases. Methane, at an atmospheric concentration of 1.7 gmol tool-1 currently, is responsible for 16% of the global warming due to its relatively high global warming potential. Soils play an important role in the CH4 cycle as methanotrophy (oxidation of CH4) and methanogenesis (production of CH4) take place in them. Understanding methanogenesis and methanotrophy is essential to establish new agriculture techniques and industrial processes that contribute to a better balance of GHG. The current knowledge of methanogenesis and methanotrophy in soils, anaerobic CH4 oxidation and methanotrophy in extreme environments is also discussed.展开更多
基金partly supported by the National Natural Science Foundation of China(41630857)the National Basic Research Program of China(2016YFD0200306)
文摘The Earth surface contains various oxic and anoxic environments. The later include natural wetlands,river and lake sediments, paddy field soils and landfills. In the last few decades, the biogeochemical cycle of carbon in anoxic environments, which leads to the production and emission of methane, a potent greenhouse gas in the atmosphere, has drawn great attentions from both scientific and public sectors. New organisms and mechanisms involved in methanogenesis and carbon cycling have been uncovered. Interspecies electron transfer is considered as a crucial step in methanogenesis in anoxic environments.Electron-carrying mediators, like H_2 and formate, are known to play the key role in electron transfer. Recently, it has been found that in addition to the conventional electron transfer via chemical mediators, direct interspecies electron transfer(DIET) can occur. In this Review, we describe the ecology and biogeochemistry of methanogenesis and highlight the effect of microbe-mineral interaction on microbial syntrophy. Recent advances in the study of DIET may pave the way towards a mechanistic understanding of methanogenesis and the influence of microbe-mineral interaction on this process.
基金Supported by the Centro de Investigación y de Estudios Avanzados del IPN,Mexico and the Consejo Nacional de Ciencia y Tecnología,Mexico(Nos.153216,232468 and 245119)
文摘Global warming, as a result of an increase in the mean temperature of the planet, might lead to catastrophic events for humanity. This temperature increase is mainly the result of an increase in the atmospheric greenhouse gases (GHG) concentration. Water vapor, carbon dioxide (CO2), methane (CH4) and nitrous oxide (N20) are the most important GHG, and human activities, such as industry, livestock and agriculture, contribute to the production of these gases. Methane, at an atmospheric concentration of 1.7 gmol tool-1 currently, is responsible for 16% of the global warming due to its relatively high global warming potential. Soils play an important role in the CH4 cycle as methanotrophy (oxidation of CH4) and methanogenesis (production of CH4) take place in them. Understanding methanogenesis and methanotrophy is essential to establish new agriculture techniques and industrial processes that contribute to a better balance of GHG. The current knowledge of methanogenesis and methanotrophy in soils, anaerobic CH4 oxidation and methanotrophy in extreme environments is also discussed.